update model card README.md
Browse files
README.md
CHANGED
@@ -18,8 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss:
|
22 |
-
- Accuracy: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -38,34 +38,32 @@ More information needed
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
-
- learning_rate: 0.
|
42 |
- train_batch_size: 8
|
43 |
-
- eval_batch_size:
|
44 |
- seed: 42
|
45 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-
|
46 |
- lr_scheduler_type: linear
|
47 |
- lr_scheduler_warmup_ratio: 0.1
|
48 |
-
- num_epochs:
|
|
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
-
| 1.
|
55 |
-
| 1.
|
56 |
-
| 1.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.0011 | 13.0 | 1469 | 1.0783 | 0.85 |
|
67 |
-
| 0.0007 | 14.0 | 1582 | 1.3324 | 0.82 |
|
68 |
-
| 0.0007 | 15.0 | 1695 | 1.2425 | 0.84 |
|
69 |
|
70 |
|
71 |
### Framework versions
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.7186
|
22 |
+
- Accuracy: 0.86
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.0001
|
42 |
- train_batch_size: 8
|
43 |
+
- eval_batch_size: 16
|
44 |
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-05
|
46 |
- lr_scheduler_type: linear
|
47 |
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- num_epochs: 12
|
49 |
+
- label_smoothing_factor: 0.05
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| 1.7045 | 1.0 | 113 | 1.7952 | 0.44 |
|
56 |
+
| 1.1808 | 2.0 | 226 | 1.1510 | 0.66 |
|
57 |
+
| 1.0978 | 3.0 | 339 | 0.9947 | 0.74 |
|
58 |
+
| 0.837 | 4.0 | 452 | 0.8767 | 0.81 |
|
59 |
+
| 0.5078 | 5.0 | 565 | 0.7830 | 0.86 |
|
60 |
+
| 0.3832 | 6.0 | 678 | 0.7838 | 0.84 |
|
61 |
+
| 0.3902 | 7.0 | 791 | 0.8064 | 0.83 |
|
62 |
+
| 0.3322 | 8.0 | 904 | 0.7964 | 0.82 |
|
63 |
+
| 0.3455 | 9.0 | 1017 | 0.7507 | 0.87 |
|
64 |
+
| 0.2924 | 10.0 | 1130 | 0.8073 | 0.86 |
|
65 |
+
| 0.2925 | 11.0 | 1243 | 0.7269 | 0.86 |
|
66 |
+
| 0.2853 | 12.0 | 1356 | 0.7186 | 0.86 |
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
### Framework versions
|