Upload folder using huggingface_hub
Browse files- .gitattributes +3 -11
- README.md +148 -0
- alphabet.json +1 -0
- config.json +107 -0
- eval.py +164 -0
- full_eval.sh +15 -0
- language_model/2gram_Fr_Hum_no_df1.bin +3 -0
- language_model/attrs.json +1 -0
- language_model/unigrams.txt +570 -0
- log_mozilla-foundation_common_voice_8_0_fr_test_predictions.txt +0 -0
- log_mozilla-foundation_common_voice_8_0_fr_test_predictions_greedy.txt +0 -0
- log_mozilla-foundation_common_voice_8_0_fr_test_targets.txt +0 -0
- log_mozilla-foundation_common_voice_8_0_fr_test_targets_greedy.txt +0 -0
- log_speech-recognition-community-v2_dev_data_fr_validation_predictions.txt +0 -0
- log_speech-recognition-community-v2_dev_data_fr_validation_predictions_greedy.txt +0 -0
- log_speech-recognition-community-v2_dev_data_fr_validation_targets.txt +0 -0
- mozilla-foundation_common_voice_8_0_fr_test_eval_results.txt +2 -0
- mozilla-foundation_common_voice_8_0_fr_test_eval_results_greedy.txt +2 -0
- preprocessor_config.json +10 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +6 -0
- speech-recognition-community-v2_dev_data_fr_validation_eval_results.txt +2 -0
- speech-recognition-community-v2_dev_data_fr_validation_eval_results_greedy.txt +2 -0
- tokenizer_config.json +48 -0
- vocab.json +49 -0
.gitattributes
CHANGED
@@ -1,35 +1,27 @@
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
|
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
|
|
11 |
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
13 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
17 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
|
21 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
22 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
|
|
24 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- fr
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- fr
|
8 |
+
- hf-asr-leaderboard
|
9 |
+
- mozilla-foundation/common_voice_8_0
|
10 |
+
- robust-speech-event
|
11 |
+
datasets:
|
12 |
+
- mozilla-foundation/common_voice_8_0
|
13 |
+
model-index:
|
14 |
+
- name: XLS-R Wav2Vec2 French by Jonatas Grosman
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Automatic Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: Common Voice 8
|
21 |
+
type: mozilla-foundation/common_voice_8_0
|
22 |
+
args: fr
|
23 |
+
metrics:
|
24 |
+
- name: Test WER
|
25 |
+
type: wer
|
26 |
+
value: 16.85
|
27 |
+
- name: Test CER
|
28 |
+
type: cer
|
29 |
+
value: 4.66
|
30 |
+
- name: Test WER (+LM)
|
31 |
+
type: wer
|
32 |
+
value: 16.32
|
33 |
+
- name: Test CER (+LM)
|
34 |
+
type: cer
|
35 |
+
value: 4.21
|
36 |
+
- task:
|
37 |
+
name: Automatic Speech Recognition
|
38 |
+
type: automatic-speech-recognition
|
39 |
+
dataset:
|
40 |
+
name: Robust Speech Event - Dev Data
|
41 |
+
type: speech-recognition-community-v2/dev_data
|
42 |
+
args: fr
|
43 |
+
metrics:
|
44 |
+
- name: Dev WER
|
45 |
+
type: wer
|
46 |
+
value: 22.34
|
47 |
+
- name: Dev CER
|
48 |
+
type: cer
|
49 |
+
value: 9.88
|
50 |
+
- name: Dev WER (+LM)
|
51 |
+
type: wer
|
52 |
+
value: 17.16
|
53 |
+
- name: Dev CER (+LM)
|
54 |
+
type: cer
|
55 |
+
value: 9.38
|
56 |
+
- task:
|
57 |
+
name: Automatic Speech Recognition
|
58 |
+
type: automatic-speech-recognition
|
59 |
+
dataset:
|
60 |
+
name: Robust Speech Event - Test Data
|
61 |
+
type: speech-recognition-community-v2/eval_data
|
62 |
+
args: fr
|
63 |
+
metrics:
|
64 |
+
- name: Test WER
|
65 |
+
type: wer
|
66 |
+
value: 19.15
|
67 |
+
---
|
68 |
+
|
69 |
+
# Fine-tuned XLS-R 1B model for speech recognition in French
|
70 |
+
|
71 |
+
Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on French using the train and validation splits of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [MediaSpeech](https://www.openslr.org/108/), [Multilingual TEDx](http://www.openslr.org/100), [Multilingual LibriSpeech](https://www.openslr.org/94/), and [Voxpopuli](https://github.com/facebookresearch/voxpopuli).
|
72 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
73 |
+
|
74 |
+
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
|
75 |
+
|
76 |
+
## Usage
|
77 |
+
|
78 |
+
Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:
|
79 |
+
|
80 |
+
```python
|
81 |
+
from huggingsound import SpeechRecognitionModel
|
82 |
+
|
83 |
+
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-french")
|
84 |
+
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
|
85 |
+
|
86 |
+
transcriptions = model.transcribe(audio_paths)
|
87 |
+
```
|
88 |
+
|
89 |
+
Writing your own inference script:
|
90 |
+
|
91 |
+
```python
|
92 |
+
import torch
|
93 |
+
import librosa
|
94 |
+
from datasets import load_dataset
|
95 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
96 |
+
|
97 |
+
LANG_ID = "fr"
|
98 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-french"
|
99 |
+
SAMPLES = 10
|
100 |
+
|
101 |
+
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
|
102 |
+
|
103 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
104 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
105 |
+
|
106 |
+
# Preprocessing the datasets.
|
107 |
+
# We need to read the audio files as arrays
|
108 |
+
def speech_file_to_array_fn(batch):
|
109 |
+
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
110 |
+
batch["speech"] = speech_array
|
111 |
+
batch["sentence"] = batch["sentence"].upper()
|
112 |
+
return batch
|
113 |
+
|
114 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
115 |
+
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
116 |
+
|
117 |
+
with torch.no_grad():
|
118 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
119 |
+
|
120 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
121 |
+
predicted_sentences = processor.batch_decode(predicted_ids)
|
122 |
+
```
|
123 |
+
|
124 |
+
## Evaluation Commands
|
125 |
+
|
126 |
+
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
|
127 |
+
|
128 |
+
```bash
|
129 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-french --dataset mozilla-foundation/common_voice_8_0 --config fr --split test
|
130 |
+
```
|
131 |
+
|
132 |
+
2. To evaluate on `speech-recognition-community-v2/dev_data`
|
133 |
+
|
134 |
+
```bash
|
135 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-french --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0
|
136 |
+
```
|
137 |
+
|
138 |
+
## Citation
|
139 |
+
If you want to cite this model you can use this:
|
140 |
+
|
141 |
+
```bibtex
|
142 |
+
@misc{grosman2021xlsr-1b-french,
|
143 |
+
title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {F}rench},
|
144 |
+
author={Grosman, Jonatas},
|
145 |
+
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-french}},
|
146 |
+
year={2022}
|
147 |
+
}
|
148 |
+
```
|
alphabet.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"labels": ["", "<s>", "</s>", "\u2047", " ", "'", "-", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "\u00e0", "\u00e2", "\u00e3", "\u00e7", "\u00e8", "\u00e9", "\u00ea", "\u00eb", "\u00ee", "\u00ef", "\u00f4", "\u00f9", "\u00fb", "\u0153"], "is_bpe": false}
|
config.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-1b",
|
3 |
+
"activation_dropout": 0.05,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.05,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 1024,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.05,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.05,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_dropout": 0.05,
|
57 |
+
"hidden_size": 1280,
|
58 |
+
"initializer_range": 0.02,
|
59 |
+
"intermediate_size": 5120,
|
60 |
+
"layer_norm_eps": 1e-05,
|
61 |
+
"layerdrop": 0.05,
|
62 |
+
"mask_feature_length": 10,
|
63 |
+
"mask_feature_min_masks": 0,
|
64 |
+
"mask_feature_prob": 0.0,
|
65 |
+
"mask_time_length": 10,
|
66 |
+
"mask_time_min_masks": 2,
|
67 |
+
"mask_time_prob": 0.05,
|
68 |
+
"model_type": "wav2vec2",
|
69 |
+
"num_adapter_layers": 3,
|
70 |
+
"num_attention_heads": 16,
|
71 |
+
"num_codevector_groups": 2,
|
72 |
+
"num_codevectors_per_group": 320,
|
73 |
+
"num_conv_pos_embedding_groups": 16,
|
74 |
+
"num_conv_pos_embeddings": 128,
|
75 |
+
"num_feat_extract_layers": 7,
|
76 |
+
"num_hidden_layers": 48,
|
77 |
+
"num_negatives": 100,
|
78 |
+
"output_hidden_size": 1280,
|
79 |
+
"pad_token_id": 0,
|
80 |
+
"proj_codevector_dim": 1024,
|
81 |
+
"tdnn_dilation": [
|
82 |
+
1,
|
83 |
+
2,
|
84 |
+
3,
|
85 |
+
1,
|
86 |
+
1
|
87 |
+
],
|
88 |
+
"tdnn_dim": [
|
89 |
+
512,
|
90 |
+
512,
|
91 |
+
512,
|
92 |
+
512,
|
93 |
+
1500
|
94 |
+
],
|
95 |
+
"tdnn_kernel": [
|
96 |
+
5,
|
97 |
+
3,
|
98 |
+
3,
|
99 |
+
1,
|
100 |
+
1
|
101 |
+
],
|
102 |
+
"torch_dtype": "float32",
|
103 |
+
"transformers_version": "4.16.0.dev0",
|
104 |
+
"use_weighted_layer_sum": false,
|
105 |
+
"vocab_size": 47,
|
106 |
+
"xvector_output_dim": 512
|
107 |
+
}
|
eval.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from datasets import load_dataset, load_metric, Audio, Dataset
|
3 |
+
from transformers import pipeline, AutoFeatureExtractor, AutoTokenizer, AutoConfig, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
|
4 |
+
import re
|
5 |
+
import torch
|
6 |
+
import argparse
|
7 |
+
from typing import Dict
|
8 |
+
|
9 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
10 |
+
""" DO NOT CHANGE. This function computes and logs the result metrics. """
|
11 |
+
|
12 |
+
log_outputs = args.log_outputs
|
13 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
14 |
+
|
15 |
+
# load metric
|
16 |
+
wer = load_metric("wer")
|
17 |
+
cer = load_metric("cer")
|
18 |
+
|
19 |
+
# compute metrics
|
20 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
21 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
22 |
+
|
23 |
+
# print & log results
|
24 |
+
result_str = (
|
25 |
+
f"WER: {wer_result}\n"
|
26 |
+
f"CER: {cer_result}"
|
27 |
+
)
|
28 |
+
print(result_str)
|
29 |
+
|
30 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
31 |
+
f.write(result_str)
|
32 |
+
|
33 |
+
# log all results in text file. Possibly interesting for analysis
|
34 |
+
if log_outputs is not None:
|
35 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
36 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
37 |
+
|
38 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
39 |
+
|
40 |
+
# mapping function to write output
|
41 |
+
def write_to_file(batch, i):
|
42 |
+
p.write(f"{i}" + "\n")
|
43 |
+
p.write(batch["prediction"] + "\n")
|
44 |
+
t.write(f"{i}" + "\n")
|
45 |
+
t.write(batch["target"] + "\n")
|
46 |
+
|
47 |
+
result.map(write_to_file, with_indices=True)
|
48 |
+
|
49 |
+
|
50 |
+
def normalize_text(text: str, invalid_chars_regex: str, to_lower: bool) -> str:
|
51 |
+
""" DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
|
52 |
+
|
53 |
+
text = text.lower() if to_lower else text.upper()
|
54 |
+
|
55 |
+
text = re.sub(invalid_chars_regex, " ", text)
|
56 |
+
|
57 |
+
text = re.sub("\s+", " ", text).strip()
|
58 |
+
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
def main(args):
|
63 |
+
# load dataset
|
64 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
65 |
+
|
66 |
+
# for testing: only process the first two examples as a test
|
67 |
+
# dataset = dataset.select(range(10))
|
68 |
+
|
69 |
+
# load processor
|
70 |
+
if args.greedy:
|
71 |
+
processor = Wav2Vec2Processor.from_pretrained(args.model_id)
|
72 |
+
decoder = None
|
73 |
+
else:
|
74 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id)
|
75 |
+
decoder = processor.decoder
|
76 |
+
|
77 |
+
feature_extractor = processor.feature_extractor
|
78 |
+
tokenizer = processor.tokenizer
|
79 |
+
|
80 |
+
# resample audio
|
81 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=feature_extractor.sampling_rate))
|
82 |
+
|
83 |
+
# load eval pipeline
|
84 |
+
if args.device is None:
|
85 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
86 |
+
|
87 |
+
config = AutoConfig.from_pretrained(args.model_id)
|
88 |
+
model = AutoModelForCTC.from_pretrained(args.model_id)
|
89 |
+
|
90 |
+
#asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
91 |
+
asr = pipeline("automatic-speech-recognition", config=config, model=model, tokenizer=tokenizer,
|
92 |
+
feature_extractor=feature_extractor, decoder=decoder, device=args.device)
|
93 |
+
|
94 |
+
# build normalizer config
|
95 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
|
96 |
+
tokens = [x for x in tokenizer.convert_ids_to_tokens(range(0, tokenizer.vocab_size))]
|
97 |
+
special_tokens = [
|
98 |
+
tokenizer.pad_token, tokenizer.word_delimiter_token,
|
99 |
+
tokenizer.unk_token, tokenizer.bos_token,
|
100 |
+
tokenizer.eos_token,
|
101 |
+
]
|
102 |
+
non_special_tokens = [x for x in tokens if x not in special_tokens]
|
103 |
+
invalid_chars_regex = f"[^\s{re.escape(''.join(set(non_special_tokens)))}]"
|
104 |
+
normalize_to_lower = False
|
105 |
+
for token in non_special_tokens:
|
106 |
+
if token.isalpha() and token.islower():
|
107 |
+
normalize_to_lower = True
|
108 |
+
break
|
109 |
+
|
110 |
+
# map function to decode audio
|
111 |
+
def map_to_pred(batch, args=args, asr=asr, invalid_chars_regex=invalid_chars_regex, normalize_to_lower=normalize_to_lower):
|
112 |
+
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
|
113 |
+
|
114 |
+
batch["prediction"] = prediction["text"]
|
115 |
+
batch["target"] = normalize_text(batch["sentence"], invalid_chars_regex, normalize_to_lower)
|
116 |
+
return batch
|
117 |
+
|
118 |
+
# run inference on all examples
|
119 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
120 |
+
|
121 |
+
# filtering out empty targets
|
122 |
+
result = result.filter(lambda example: example["target"] != "")
|
123 |
+
|
124 |
+
# compute and log_results
|
125 |
+
# do not change function below
|
126 |
+
log_results(result, args)
|
127 |
+
|
128 |
+
|
129 |
+
if __name__ == "__main__":
|
130 |
+
parser = argparse.ArgumentParser()
|
131 |
+
|
132 |
+
parser.add_argument(
|
133 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
134 |
+
)
|
135 |
+
parser.add_argument(
|
136 |
+
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
|
137 |
+
)
|
138 |
+
parser.add_argument(
|
139 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
140 |
+
)
|
141 |
+
parser.add_argument(
|
142 |
+
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
143 |
+
)
|
144 |
+
parser.add_argument(
|
145 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
|
146 |
+
)
|
147 |
+
parser.add_argument(
|
148 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
|
149 |
+
)
|
150 |
+
parser.add_argument(
|
151 |
+
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
|
152 |
+
)
|
153 |
+
parser.add_argument(
|
154 |
+
"--greedy", action='store_true', help="If defined, the LM will be ignored during inference."
|
155 |
+
)
|
156 |
+
parser.add_argument(
|
157 |
+
"--device",
|
158 |
+
type=int,
|
159 |
+
default=None,
|
160 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
161 |
+
)
|
162 |
+
args = parser.parse_args()
|
163 |
+
|
164 |
+
main(args)
|
full_eval.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CV 8 - TEST
|
2 |
+
|
3 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-french --dataset mozilla-foundation/common_voice_8_0 --config fr --split test --log_outputs --greedy
|
4 |
+
mv log_mozilla-foundation_common_voice_8_0_fr_test_predictions.txt log_mozilla-foundation_common_voice_8_0_fr_test_predictions_greedy.txt
|
5 |
+
mv mozilla-foundation_common_voice_8_0_fr_test_eval_results.txt mozilla-foundation_common_voice_8_0_fr_test_eval_results_greedy.txt
|
6 |
+
|
7 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-french --dataset mozilla-foundation/common_voice_8_0 --config fr --split test --log_outputs
|
8 |
+
|
9 |
+
# HF EVENT - DEV
|
10 |
+
|
11 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-french --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs --greedy
|
12 |
+
mv log_speech-recognition-community-v2_dev_data_fr_validation_predictions.txt log_speech-recognition-community-v2_dev_data_fr_validation_predictions_greedy.txt
|
13 |
+
mv speech-recognition-community-v2_dev_data_fr_validation_eval_results.txt speech-recognition-community-v2_dev_data_fr_validation_eval_results_greedy.txt
|
14 |
+
|
15 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-french --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs
|
language_model/2gram_Fr_Hum_no_df1.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16f10db2ce07e1d2405f61cecb6599d8372a61893a2ed2147de525eb9ab7ce48
|
3 |
+
size 34663
|
language_model/attrs.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
|
language_model/unigrams.txt
ADDED
@@ -0,0 +1,570 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
</s>
|
2 |
+
<s>
|
3 |
+
Lagume
|
4 |
+
a
|
5 |
+
absence
|
6 |
+
abzence
|
7 |
+
agile
|
8 |
+
agrguile
|
9 |
+
al
|
10 |
+
amour
|
11 |
+
anglage
|
12 |
+
archestre
|
13 |
+
argile
|
14 |
+
attience
|
15 |
+
b
|
16 |
+
bacurelle
|
17 |
+
baie
|
18 |
+
bain
|
19 |
+
baissi
|
20 |
+
balade
|
21 |
+
balan
|
22 |
+
bambou
|
23 |
+
ban
|
24 |
+
bante
|
25 |
+
bap
|
26 |
+
bapetème
|
27 |
+
bapetême
|
28 |
+
bapt
|
29 |
+
baptem
|
30 |
+
barrage
|
31 |
+
bas
|
32 |
+
basket
|
33 |
+
bastia
|
34 |
+
bastioa
|
35 |
+
bastioi
|
36 |
+
bastioire
|
37 |
+
bastiore
|
38 |
+
basto
|
39 |
+
bastoire
|
40 |
+
baston
|
41 |
+
bastriore
|
42 |
+
bate
|
43 |
+
belai
|
44 |
+
ben
|
45 |
+
bente
|
46 |
+
berdé
|
47 |
+
beuil
|
48 |
+
beuile
|
49 |
+
bian
|
50 |
+
biberon
|
51 |
+
bibon
|
52 |
+
bien
|
53 |
+
bigacelle
|
54 |
+
bile
|
55 |
+
bille
|
56 |
+
bof
|
57 |
+
bombfage
|
58 |
+
bon
|
59 |
+
bonfage
|
60 |
+
bonfague
|
61 |
+
bonheur
|
62 |
+
bonjour
|
63 |
+
bouson
|
64 |
+
brume
|
65 |
+
brumedurence
|
66 |
+
brumidurence
|
67 |
+
brune
|
68 |
+
bucurelle
|
69 |
+
bulé
|
70 |
+
buson
|
71 |
+
busson
|
72 |
+
bé
|
73 |
+
béret
|
74 |
+
bœuf
|
75 |
+
c'est
|
76 |
+
ca
|
77 |
+
cachar
|
78 |
+
cachoi
|
79 |
+
cachoir
|
80 |
+
cag
|
81 |
+
cage
|
82 |
+
cahdfo
|
83 |
+
calier
|
84 |
+
calin
|
85 |
+
campagne
|
86 |
+
canch
|
87 |
+
canchar
|
88 |
+
canchoir
|
89 |
+
canchoirche
|
90 |
+
cane
|
91 |
+
canechoir
|
92 |
+
canechou
|
93 |
+
canjeau
|
94 |
+
canoir
|
95 |
+
caravelle
|
96 |
+
carin
|
97 |
+
carotte
|
98 |
+
carré
|
99 |
+
cartié
|
100 |
+
carton
|
101 |
+
case
|
102 |
+
casier
|
103 |
+
casse
|
104 |
+
cassier
|
105 |
+
catastrophe
|
106 |
+
cecreau
|
107 |
+
cellier
|
108 |
+
cellière
|
109 |
+
cenlier
|
110 |
+
cerceau
|
111 |
+
cha
|
112 |
+
chabre
|
113 |
+
chado
|
114 |
+
chagr
|
115 |
+
chagrin
|
116 |
+
chaleur
|
117 |
+
cham
|
118 |
+
chambre
|
119 |
+
champagne
|
120 |
+
chaneso
|
121 |
+
chanson
|
122 |
+
chanzon
|
123 |
+
chem
|
124 |
+
chemin
|
125 |
+
chemisier
|
126 |
+
chemissier
|
127 |
+
choir
|
128 |
+
choix
|
129 |
+
cien
|
130 |
+
cieux
|
131 |
+
cio
|
132 |
+
coinecidence
|
133 |
+
commande
|
134 |
+
compagne
|
135 |
+
competeur
|
136 |
+
compteur
|
137 |
+
comtrueur
|
138 |
+
cométon
|
139 |
+
concidence
|
140 |
+
congé
|
141 |
+
conjeau
|
142 |
+
conjeu
|
143 |
+
consige
|
144 |
+
consigne
|
145 |
+
consinge
|
146 |
+
copeur
|
147 |
+
cotice
|
148 |
+
couette
|
149 |
+
couleur
|
150 |
+
coï
|
151 |
+
coïncidence
|
152 |
+
cran
|
153 |
+
cret
|
154 |
+
crâne
|
155 |
+
crêne
|
156 |
+
crêpe
|
157 |
+
crête
|
158 |
+
cuisine
|
159 |
+
cuisinier
|
160 |
+
curitece
|
161 |
+
cutice
|
162 |
+
cuvition
|
163 |
+
d'accord
|
164 |
+
da
|
165 |
+
daveau
|
166 |
+
de
|
167 |
+
deil
|
168 |
+
demain
|
169 |
+
demande
|
170 |
+
dente
|
171 |
+
devo
|
172 |
+
dieux
|
173 |
+
digacelle
|
174 |
+
dijacelé
|
175 |
+
dille
|
176 |
+
diège
|
177 |
+
duie
|
178 |
+
duit
|
179 |
+
débarquement
|
180 |
+
déjic
|
181 |
+
délice
|
182 |
+
déménagement
|
183 |
+
département
|
184 |
+
déret
|
185 |
+
désir
|
186 |
+
déss
|
187 |
+
déssir
|
188 |
+
dévonne
|
189 |
+
echau
|
190 |
+
engagé
|
191 |
+
escor
|
192 |
+
escroc
|
193 |
+
escroque
|
194 |
+
espitème
|
195 |
+
excitation
|
196 |
+
f
|
197 |
+
facade
|
198 |
+
face
|
199 |
+
facette
|
200 |
+
facteu
|
201 |
+
facteur
|
202 |
+
fai
|
203 |
+
faience
|
204 |
+
faisceau
|
205 |
+
faisque
|
206 |
+
fannence
|
207 |
+
fari
|
208 |
+
farine
|
209 |
+
fasco
|
210 |
+
façade
|
211 |
+
faïence
|
212 |
+
fendant
|
213 |
+
fer
|
214 |
+
fera
|
215 |
+
ferrelle
|
216 |
+
ferreuille
|
217 |
+
fi
|
218 |
+
fide
|
219 |
+
fidenete
|
220 |
+
fident
|
221 |
+
fidneute
|
222 |
+
fido
|
223 |
+
fidène
|
224 |
+
fidé
|
225 |
+
figié
|
226 |
+
figue
|
227 |
+
figure
|
228 |
+
fijure
|
229 |
+
file
|
230 |
+
fille
|
231 |
+
filon
|
232 |
+
filou
|
233 |
+
filé
|
234 |
+
filére
|
235 |
+
fir
|
236 |
+
firoie
|
237 |
+
fleur
|
238 |
+
foire
|
239 |
+
fon
|
240 |
+
for
|
241 |
+
fossile
|
242 |
+
fossé
|
243 |
+
frère
|
244 |
+
frére
|
245 |
+
fureu
|
246 |
+
fureur
|
247 |
+
furie
|
248 |
+
fégré
|
249 |
+
garçon
|
250 |
+
garçonnet
|
251 |
+
genevrier
|
252 |
+
genévrier
|
253 |
+
gidon
|
254 |
+
gigot
|
255 |
+
gou
|
256 |
+
gouache
|
257 |
+
grasentillon
|
258 |
+
grassention
|
259 |
+
grossan
|
260 |
+
grève
|
261 |
+
gudon
|
262 |
+
gui
|
263 |
+
guidion
|
264 |
+
guidon
|
265 |
+
guignon
|
266 |
+
guigot
|
267 |
+
guigote
|
268 |
+
guiro
|
269 |
+
guy
|
270 |
+
guydon
|
271 |
+
gé
|
272 |
+
géant
|
273 |
+
gédo
|
274 |
+
gévrier
|
275 |
+
haie
|
276 |
+
haine
|
277 |
+
hauteur
|
278 |
+
heure
|
279 |
+
heureux
|
280 |
+
hupeur
|
281 |
+
héteur
|
282 |
+
hôtel
|
283 |
+
ielle
|
284 |
+
in
|
285 |
+
indiscrétion
|
286 |
+
indistranti
|
287 |
+
indistrétion
|
288 |
+
inetelingé
|
289 |
+
initilition
|
290 |
+
inittiation
|
291 |
+
instrument
|
292 |
+
instruments
|
293 |
+
intelligence
|
294 |
+
invitation
|
295 |
+
ive
|
296 |
+
j
|
297 |
+
jagul
|
298 |
+
jagule
|
299 |
+
jan
|
300 |
+
jar
|
301 |
+
jardin
|
302 |
+
jardinet
|
303 |
+
jauf
|
304 |
+
jeu
|
305 |
+
jeul
|
306 |
+
jiédo
|
307 |
+
joage
|
308 |
+
joie
|
309 |
+
joix
|
310 |
+
jol
|
311 |
+
joli
|
312 |
+
joue
|
313 |
+
jour
|
314 |
+
judion
|
315 |
+
judo
|
316 |
+
juidon
|
317 |
+
juin
|
318 |
+
juit
|
319 |
+
jéan
|
320 |
+
kerceau
|
321 |
+
la
|
322 |
+
lageule
|
323 |
+
laglu
|
324 |
+
lagu
|
325 |
+
lagueule
|
326 |
+
lagul
|
327 |
+
lagum
|
328 |
+
lait
|
329 |
+
lajle
|
330 |
+
laju
|
331 |
+
lajul
|
332 |
+
lajun
|
333 |
+
lamon
|
334 |
+
lessoie
|
335 |
+
leu
|
336 |
+
li
|
337 |
+
lieux
|
338 |
+
lin
|
339 |
+
liège
|
340 |
+
lof
|
341 |
+
loif
|
342 |
+
lumèce
|
343 |
+
lumé
|
344 |
+
légenbe
|
345 |
+
légende
|
346 |
+
légume
|
347 |
+
lésoie
|
348 |
+
malic
|
349 |
+
malice
|
350 |
+
man
|
351 |
+
manivelle
|
352 |
+
mat
|
353 |
+
matou
|
354 |
+
men
|
355 |
+
menuisier
|
356 |
+
meuil
|
357 |
+
mieul
|
358 |
+
milvan
|
359 |
+
milvenet
|
360 |
+
minvil
|
361 |
+
mirabelle
|
362 |
+
mise
|
363 |
+
misse
|
364 |
+
montagne
|
365 |
+
mouette
|
366 |
+
moulin
|
367 |
+
moulinet
|
368 |
+
mouzna
|
369 |
+
muette
|
370 |
+
musson
|
371 |
+
métal
|
372 |
+
métou
|
373 |
+
n
|
374 |
+
nage
|
375 |
+
nardé
|
376 |
+
natice
|
377 |
+
navet
|
378 |
+
navette
|
379 |
+
neo
|
380 |
+
ninoie
|
381 |
+
ninoir
|
382 |
+
noed
|
383 |
+
noine
|
384 |
+
noir
|
385 |
+
noix
|
386 |
+
nombre
|
387 |
+
non
|
388 |
+
notic
|
389 |
+
notice
|
390 |
+
nuit
|
391 |
+
nœuds
|
392 |
+
ocueil
|
393 |
+
opposition
|
394 |
+
oppossition
|
395 |
+
opposttion
|
396 |
+
orchaistre
|
397 |
+
orjestre
|
398 |
+
oté
|
399 |
+
ouest
|
400 |
+
our
|
401 |
+
pacoc
|
402 |
+
pain
|
403 |
+
pané
|
404 |
+
parade
|
405 |
+
parane
|
406 |
+
paraso
|
407 |
+
parné
|
408 |
+
paroce
|
409 |
+
passé
|
410 |
+
pastoire
|
411 |
+
paten
|
412 |
+
patien
|
413 |
+
patience
|
414 |
+
pattience
|
415 |
+
paus
|
416 |
+
pause
|
417 |
+
pausse
|
418 |
+
paussé
|
419 |
+
pefau
|
420 |
+
pente
|
421 |
+
perné
|
422 |
+
phè
|
423 |
+
phème
|
424 |
+
pinson
|
425 |
+
piné
|
426 |
+
pireau
|
427 |
+
piège
|
428 |
+
pléfant
|
429 |
+
pléfantion
|
430 |
+
pléfanttion
|
431 |
+
poi
|
432 |
+
poids
|
433 |
+
point
|
434 |
+
poire
|
435 |
+
posé
|
436 |
+
production
|
437 |
+
prune
|
438 |
+
précision
|
439 |
+
précission
|
440 |
+
préoduction
|
441 |
+
puli
|
442 |
+
pun
|
443 |
+
pune
|
444 |
+
pâ
|
445 |
+
pâté
|
446 |
+
quile
|
447 |
+
quille
|
448 |
+
quégé
|
449 |
+
r
|
450 |
+
rac
|
451 |
+
race
|
452 |
+
raie
|
453 |
+
rari
|
454 |
+
ras
|
455 |
+
rasse
|
456 |
+
rata
|
457 |
+
ratase
|
458 |
+
ratassa
|
459 |
+
ratasse
|
460 |
+
ratu
|
461 |
+
reconnaissance
|
462 |
+
rega
|
463 |
+
regret
|
464 |
+
rept
|
465 |
+
reptile
|
466 |
+
reugal
|
467 |
+
reux
|
468 |
+
revenu
|
469 |
+
rille
|
470 |
+
rof
|
471 |
+
ronjeau
|
472 |
+
rose
|
473 |
+
rosier
|
474 |
+
rue
|
475 |
+
ruit
|
476 |
+
rute
|
477 |
+
réc
|
478 |
+
réclamationpune
|
479 |
+
réconnaissance
|
480 |
+
régal
|
481 |
+
réjal
|
482 |
+
saison
|
483 |
+
saisson
|
484 |
+
sanchoir
|
485 |
+
sauvage
|
486 |
+
se
|
487 |
+
sec
|
488 |
+
secret
|
489 |
+
secrette
|
490 |
+
sepetième
|
491 |
+
septième
|
492 |
+
si
|
493 |
+
sico
|
494 |
+
sido
|
495 |
+
sidomelle
|
496 |
+
siège
|
497 |
+
sière
|
498 |
+
solo
|
499 |
+
sorpile
|
500 |
+
souré
|
501 |
+
stade
|
502 |
+
stand
|
503 |
+
ste
|
504 |
+
style
|
505 |
+
stylo
|
506 |
+
suf
|
507 |
+
t
|
508 |
+
ta
|
509 |
+
taille
|
510 |
+
tan
|
511 |
+
tanjeau
|
512 |
+
tarbion
|
513 |
+
tartatasse
|
514 |
+
te
|
515 |
+
ten
|
516 |
+
tenelle
|
517 |
+
tennaille
|
518 |
+
tente
|
519 |
+
ter
|
520 |
+
terfone
|
521 |
+
terfonet
|
522 |
+
terreau
|
523 |
+
test
|
524 |
+
tiefeul
|
525 |
+
timbre
|
526 |
+
tison
|
527 |
+
tiveau
|
528 |
+
tiège
|
529 |
+
tiégé
|
530 |
+
toire
|
531 |
+
toit
|
532 |
+
ton
|
533 |
+
tondé
|
534 |
+
toutefindulence
|
535 |
+
tradition
|
536 |
+
tradittion
|
537 |
+
trufondulence
|
538 |
+
trèbe
|
539 |
+
trède
|
540 |
+
trème
|
541 |
+
trébé
|
542 |
+
trédion
|
543 |
+
tufonle
|
544 |
+
tuit
|
545 |
+
tuite
|
546 |
+
tulème
|
547 |
+
tulé
|
548 |
+
tume
|
549 |
+
tumepune
|
550 |
+
turite
|
551 |
+
turlème
|
552 |
+
té
|
553 |
+
ténaille
|
554 |
+
valet
|
555 |
+
valette
|
556 |
+
valeur
|
557 |
+
vente
|
558 |
+
vo
|
559 |
+
voix
|
560 |
+
voleur
|
561 |
+
vous
|
562 |
+
zeux
|
563 |
+
é
|
564 |
+
écai
|
565 |
+
échau
|
566 |
+
écor
|
567 |
+
écueille
|
568 |
+
élève
|
569 |
+
équelle
|
570 |
+
œuf
|
log_mozilla-foundation_common_voice_8_0_fr_test_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_mozilla-foundation_common_voice_8_0_fr_test_predictions_greedy.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_mozilla-foundation_common_voice_8_0_fr_test_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_mozilla-foundation_common_voice_8_0_fr_test_targets_greedy.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_fr_validation_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_fr_validation_predictions_greedy.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_fr_validation_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
mozilla-foundation_common_voice_8_0_fr_test_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.16320660093488012
|
2 |
+
CER: 0.04213180710602369
|
mozilla-foundation_common_voice_8_0_fr_test_eval_results_greedy.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.168549674179772
|
2 |
+
CER: 0.046693488978296595
|
preprocessor_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"processor_class": "Wav2Vec2ProcessorWithLM",
|
8 |
+
"return_attention_mask": true,
|
9 |
+
"sampling_rate": 16000
|
10 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c526b57c0fa8c775ae10130211e8e6ea900c5c3b89e10ad13651f2c35326a482
|
3 |
+
size 3850553521
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"pad_token": "<pad>",
|
5 |
+
"unk_token": "<unk>"
|
6 |
+
}
|
speech-recognition-community-v2_dev_data_fr_validation_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.1716189447145687
|
2 |
+
CER: 0.09386097249622839
|
speech-recognition-community-v2_dev_data_fr_validation_eval_results_greedy.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.22343778137943454
|
2 |
+
CER: 0.09883563498510696
|
tokenizer_config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<pad>",
|
5 |
+
"lstrip": true,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": true,
|
8 |
+
"single_word": false,
|
9 |
+
"special": false
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": true,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": true,
|
16 |
+
"single_word": false,
|
17 |
+
"special": false
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": true,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": true,
|
24 |
+
"single_word": false,
|
25 |
+
"special": false
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": true,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": true,
|
32 |
+
"single_word": false,
|
33 |
+
"special": false
|
34 |
+
}
|
35 |
+
},
|
36 |
+
"bos_token": "<s>",
|
37 |
+
"clean_up_tokenization_spaces": true,
|
38 |
+
"do_lower_case": false,
|
39 |
+
"eos_token": "</s>",
|
40 |
+
"model_max_length": 1000000000000000019884624838656,
|
41 |
+
"pad_token": "<pad>",
|
42 |
+
"processor_class": "Wav2Vec2ProcessorWithLM",
|
43 |
+
"replace_word_delimiter_char": " ",
|
44 |
+
"target_lang": null,
|
45 |
+
"tokenizer_class": "Wav2Vec2CTCTokenizer",
|
46 |
+
"unk_token": "<unk>",
|
47 |
+
"word_delimiter_token": "|"
|
48 |
+
}
|
vocab.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"'": 5,
|
3 |
+
"-": 6,
|
4 |
+
"</s>": 2,
|
5 |
+
"<pad>": 0,
|
6 |
+
"<s>": 1,
|
7 |
+
"<unk>": 3,
|
8 |
+
"a": 7,
|
9 |
+
"b": 8,
|
10 |
+
"c": 9,
|
11 |
+
"d": 10,
|
12 |
+
"e": 11,
|
13 |
+
"f": 12,
|
14 |
+
"g": 13,
|
15 |
+
"h": 14,
|
16 |
+
"i": 15,
|
17 |
+
"j": 16,
|
18 |
+
"k": 17,
|
19 |
+
"l": 18,
|
20 |
+
"m": 19,
|
21 |
+
"n": 20,
|
22 |
+
"o": 21,
|
23 |
+
"p": 22,
|
24 |
+
"q": 23,
|
25 |
+
"r": 24,
|
26 |
+
"s": 25,
|
27 |
+
"t": 26,
|
28 |
+
"u": 27,
|
29 |
+
"v": 28,
|
30 |
+
"w": 29,
|
31 |
+
"x": 30,
|
32 |
+
"y": 31,
|
33 |
+
"z": 32,
|
34 |
+
"|": 4,
|
35 |
+
"à": 33,
|
36 |
+
"â": 34,
|
37 |
+
"ã": 35,
|
38 |
+
"ç": 36,
|
39 |
+
"è": 37,
|
40 |
+
"é": 38,
|
41 |
+
"ê": 39,
|
42 |
+
"ë": 40,
|
43 |
+
"î": 41,
|
44 |
+
"ï": 42,
|
45 |
+
"ô": 43,
|
46 |
+
"ù": 44,
|
47 |
+
"û": 45,
|
48 |
+
"œ": 46
|
49 |
+
}
|