DandinPower commited on
Commit
2f9cf9a
1 Parent(s): 24a1507

End of training

Browse files
Files changed (2) hide show
  1. README.md +111 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ base_model: microsoft/deberta-v3-base
6
+ tags:
7
+ - nycu-112-2-datamining-hw2
8
+ - generated_from_trainer
9
+ datasets:
10
+ - DandinPower/review_cleanonlytitleandtext
11
+ metrics:
12
+ - accuracy
13
+ model-index:
14
+ - name: deberta-v3-base-cotat
15
+ results:
16
+ - task:
17
+ name: Text Classification
18
+ type: text-classification
19
+ dataset:
20
+ name: DandinPower/review_cleanonlytitleandtext
21
+ type: DandinPower/review_cleanonlytitleandtext
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.623
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # deberta-v3-base-cotat
32
+
33
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the DandinPower/review_cleanonlytitleandtext dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 1.4985
36
+ - Accuracy: 0.623
37
+ - Macro F1: 0.6247
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 4.5e-05
57
+ - train_batch_size: 8
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 1500
63
+ - num_epochs: 5
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 |
68
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
69
+ | 1.0223 | 0.14 | 500 | 0.9610 | 0.592 | 0.5971 |
70
+ | 1.0108 | 0.29 | 1000 | 0.9378 | 0.6044 | 0.6083 |
71
+ | 0.9323 | 0.43 | 1500 | 0.9605 | 0.589 | 0.5652 |
72
+ | 0.9651 | 0.57 | 2000 | 0.9845 | 0.5797 | 0.5687 |
73
+ | 0.928 | 0.71 | 2500 | 0.9521 | 0.5907 | 0.5656 |
74
+ | 0.9205 | 0.86 | 3000 | 0.9073 | 0.603 | 0.5740 |
75
+ | 0.9243 | 1.0 | 3500 | 0.8876 | 0.616 | 0.6113 |
76
+ | 0.8545 | 1.14 | 4000 | 0.8631 | 0.6267 | 0.6290 |
77
+ | 0.8267 | 1.29 | 4500 | 0.8908 | 0.624 | 0.6185 |
78
+ | 0.8175 | 1.43 | 5000 | 0.8771 | 0.6173 | 0.6222 |
79
+ | 0.8613 | 1.57 | 5500 | 0.9564 | 0.6209 | 0.6081 |
80
+ | 0.8138 | 1.71 | 6000 | 0.9246 | 0.6089 | 0.6063 |
81
+ | 0.7314 | 1.86 | 6500 | 0.9030 | 0.6329 | 0.6313 |
82
+ | 0.8287 | 2.0 | 7000 | 0.8753 | 0.6211 | 0.6235 |
83
+ | 0.6963 | 2.14 | 7500 | 0.9700 | 0.6247 | 0.6257 |
84
+ | 0.7034 | 2.29 | 8000 | 0.9592 | 0.6234 | 0.6220 |
85
+ | 0.679 | 2.43 | 8500 | 0.8994 | 0.6233 | 0.6272 |
86
+ | 0.7207 | 2.57 | 9000 | 1.0013 | 0.6236 | 0.6183 |
87
+ | 0.6992 | 2.71 | 9500 | 0.9385 | 0.6169 | 0.6219 |
88
+ | 0.7032 | 2.86 | 10000 | 0.9247 | 0.6366 | 0.6364 |
89
+ | 0.6949 | 3.0 | 10500 | 0.9615 | 0.6239 | 0.6281 |
90
+ | 0.5581 | 3.14 | 11000 | 1.0439 | 0.6217 | 0.6267 |
91
+ | 0.55 | 3.29 | 11500 | 1.1205 | 0.6259 | 0.6232 |
92
+ | 0.5496 | 3.43 | 12000 | 1.1122 | 0.6226 | 0.6267 |
93
+ | 0.5462 | 3.57 | 12500 | 1.0692 | 0.6251 | 0.6263 |
94
+ | 0.5121 | 3.71 | 13000 | 1.1563 | 0.6197 | 0.6214 |
95
+ | 0.531 | 3.86 | 13500 | 1.1123 | 0.6261 | 0.6256 |
96
+ | 0.5256 | 4.0 | 14000 | 1.1194 | 0.6247 | 0.6264 |
97
+ | 0.3908 | 4.14 | 14500 | 1.3631 | 0.6204 | 0.6210 |
98
+ | 0.4439 | 4.29 | 15000 | 1.4810 | 0.6204 | 0.6211 |
99
+ | 0.4252 | 4.43 | 15500 | 1.4454 | 0.6211 | 0.6217 |
100
+ | 0.3721 | 4.57 | 16000 | 1.5315 | 0.6204 | 0.6231 |
101
+ | 0.369 | 4.71 | 16500 | 1.4797 | 0.6184 | 0.6190 |
102
+ | 0.3907 | 4.86 | 17000 | 1.4857 | 0.6219 | 0.6234 |
103
+ | 0.4022 | 5.0 | 17500 | 1.4985 | 0.623 | 0.6247 |
104
+
105
+
106
+ ### Framework versions
107
+
108
+ - Transformers 4.39.3
109
+ - Pytorch 2.2.2+cu121
110
+ - Datasets 2.18.0
111
+ - Tokenizers 0.15.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a01dd5e4e682bd70ce66a8029c01793900ddbd6f6d2f9b847c91e9f9b4679072
3
  size 737728508
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e82a11d0bb937a00f72c6e5313704ab821470d15df1e022fed9eead3f08a8aa5
3
  size 737728508