--- language: - en license: mit base_model: microsoft/deberta-v3-small tags: - nycu-112-2-datamining-hw2 - generated_from_trainer datasets: - DandinPower/review_onlytitleandtext metrics: - accuracy model-index: - name: deberta-v3-small-otat-recommened-hp results: - task: name: Text Classification type: text-classification dataset: name: DandinPower/review_onlytitleandtext type: DandinPower/review_onlytitleandtext metrics: - name: Accuracy type: accuracy value: 0.6228571428571429 --- # deberta-v3-small-otat-recommened-hp This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the DandinPower/review_onlytitleandtext dataset. It achieves the following results on the evaluation set: - Loss: 1.6500 - Accuracy: 0.6229 - Macro F1: 0.6240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 0.8942 | 1.14 | 500 | 0.8753 | 0.6316 | 0.6330 | | 0.7816 | 2.29 | 1000 | 0.8880 | 0.633 | 0.6216 | | 0.7231 | 3.43 | 1500 | 0.8827 | 0.632 | 0.6322 | | 0.6145 | 4.57 | 2000 | 0.9674 | 0.6369 | 0.6329 | | 0.4694 | 5.71 | 2500 | 1.0903 | 0.6249 | 0.6200 | | 0.3611 | 6.86 | 3000 | 1.2490 | 0.6216 | 0.6249 | | 0.278 | 8.0 | 3500 | 1.4194 | 0.6201 | 0.6230 | | 0.1689 | 9.14 | 4000 | 1.6500 | 0.6229 | 0.6240 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2