File size: 2,175 Bytes
2b785bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
language:
- en
license: mit
base_model: microsoft/deberta-v3-xsmall
tags:
- nycu-112-2-datamining-hw2
- generated_from_trainer
datasets:
- DandinPower/review_onlytitleandtext
metrics:
- accuracy
model-index:
- name: deberta-v3-xsmall-otat-recommened-hp
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: DandinPower/review_onlytitleandtext
      type: DandinPower/review_onlytitleandtext
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6544285714285715
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta-v3-xsmall-otat-recommened-hp

This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the DandinPower/review_onlytitleandtext dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8557
- Accuracy: 0.6544
- Macro F1: 0.6530

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| 0.9839        | 1.14  | 500  | 0.9456          | 0.6059   | 0.5947   |
| 0.8351        | 2.29  | 1000 | 0.8711          | 0.6367   | 0.6268   |
| 0.7364        | 3.43  | 1500 | 0.8376          | 0.6433   | 0.6463   |
| 0.6687        | 4.57  | 2000 | 0.8557          | 0.6544   | 0.6530   |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2