File size: 2,104 Bytes
f860366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
language:
- zh
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- nycu-112-2-deeplearning-hw2
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.2
datasets:
- DandinPower/ZH-Reading-Comprehension-Mistral-Instruct
model-index:
- name: mistral_7b_lora_completion_only
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral_7b_lora_completion_only

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the DandinPower/ZH-Reading-Comprehension-Mistral-Instruct dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1344

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 700
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.1996        | 0.3690 | 250  | 0.1814          |
| 0.1856        | 0.7380 | 500  | 0.1344          |
| 0.1515        | 1.1070 | 750  | 0.1724          |
| 0.1547        | 1.4760 | 1000 | 0.1977          |
| 0.0953        | 1.8450 | 1250 | 0.1641          |
| 0.0788        | 2.2140 | 1500 | 0.1450          |
| 0.0715        | 2.5830 | 1750 | 0.1359          |
| 0.0646        | 2.9520 | 2000 | 0.1427          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1