File size: 4,753 Bytes
7acb087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
license: mit
base_model: microsoft/deberta-v3-xsmall
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: recommendation-news-clicked-random-select-and-filter
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# recommendation-news-clicked-random-select-and-filter

This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5736
- Accuracy: 0.7001
- Macro F1: 0.6446

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Macro F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:--------:|
| 0.6446        | 0.0224 | 200  | 0.6369          | 0.6658   | 0.3997   |
| 0.65          | 0.0448 | 400  | 0.6337          | 0.6658   | 0.3997   |
| 0.6092        | 0.0672 | 600  | 0.6087          | 0.6725   | 0.5938   |
| 0.5988        | 0.0895 | 800  | 0.5995          | 0.6872   | 0.5664   |
| 0.5839        | 0.1119 | 1000 | 0.5979          | 0.6937   | 0.5908   |
| 0.6082        | 0.1343 | 1200 | 0.5879          | 0.6936   | 0.6149   |
| 0.5912        | 0.1567 | 1400 | 0.5857          | 0.6946   | 0.5626   |
| 0.5641        | 0.1791 | 1600 | 0.5848          | 0.6995   | 0.5927   |
| 0.5884        | 0.2015 | 1800 | 0.5797          | 0.6993   | 0.6093   |
| 0.5814        | 0.2239 | 2000 | 0.5807          | 0.6997   | 0.6100   |
| 0.5875        | 0.2462 | 2200 | 0.5774          | 0.7015   | 0.6151   |
| 0.5627        | 0.2686 | 2400 | 0.5796          | 0.6997   | 0.6302   |
| 0.5521        | 0.2910 | 2600 | 0.5856          | 0.7010   | 0.6140   |
| 0.5979        | 0.3134 | 2800 | 0.5742          | 0.7023   | 0.6094   |
| 0.6046        | 0.3358 | 3000 | 0.5792          | 0.6946   | 0.6408   |
| 0.5741        | 0.3582 | 3200 | 0.5781          | 0.7011   | 0.6301   |
| 0.566         | 0.3805 | 3400 | 0.5752          | 0.7013   | 0.6330   |
| 0.5589        | 0.4029 | 3600 | 0.5769          | 0.7010   | 0.6291   |
| 0.5758        | 0.4253 | 3800 | 0.5733          | 0.7033   | 0.6329   |
| 0.5714        | 0.4477 | 4000 | 0.5718          | 0.7044   | 0.6223   |
| 0.5797        | 0.4701 | 4200 | 0.5764          | 0.7021   | 0.6367   |
| 0.5669        | 0.4925 | 4400 | 0.5726          | 0.7022   | 0.6393   |
| 0.5655        | 0.5149 | 4600 | 0.5764          | 0.7062   | 0.6183   |
| 0.5743        | 0.5372 | 4800 | 0.5720          | 0.7053   | 0.6294   |
| 0.5657        | 0.5596 | 5000 | 0.5704          | 0.7047   | 0.6338   |
| 0.5766        | 0.5820 | 5200 | 0.5723          | 0.7031   | 0.6400   |
| 0.5748        | 0.6044 | 5400 | 0.5699          | 0.7067   | 0.6121   |
| 0.5669        | 0.6268 | 5600 | 0.5720          | 0.7048   | 0.6379   |
| 0.5557        | 0.6492 | 5800 | 0.5670          | 0.7071   | 0.6124   |
| 0.5675        | 0.6716 | 6000 | 0.5680          | 0.7075   | 0.6181   |
| 0.5808        | 0.6939 | 6200 | 0.5700          | 0.7066   | 0.6331   |
| 0.5792        | 0.7163 | 6400 | 0.5736          | 0.7001   | 0.6446   |
| 0.5583        | 0.7387 | 6600 | 0.5687          | 0.7060   | 0.6346   |
| 0.582         | 0.7611 | 6800 | 0.5667          | 0.7076   | 0.6248   |
| 0.5769        | 0.7835 | 7000 | 0.5694          | 0.7051   | 0.6411   |
| 0.568         | 0.8059 | 7200 | 0.5675          | 0.7081   | 0.6286   |
| 0.5712        | 0.8283 | 7400 | 0.5674          | 0.7084   | 0.6249   |
| 0.554         | 0.8506 | 7600 | 0.5675          | 0.7076   | 0.6350   |
| 0.5707        | 0.8730 | 7800 | 0.5661          | 0.7077   | 0.6347   |
| 0.577         | 0.8954 | 8000 | 0.5685          | 0.7066   | 0.6406   |
| 0.5766        | 0.9178 | 8200 | 0.5677          | 0.7077   | 0.6351   |
| 0.5992        | 0.9402 | 8400 | 0.5656          | 0.7084   | 0.6327   |
| 0.5744        | 0.9626 | 8600 | 0.5671          | 0.7061   | 0.6407   |
| 0.5748        | 0.9849 | 8800 | 0.5663          | 0.7078   | 0.6362   |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1