Danielmartinez commited on
Commit
cd8c6c3
1 Parent(s): 58a6d42

first_attempt

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 260.98 +/- 15.02
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d18df2160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d18df21f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d18df2280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d18df2310>", "_build": "<function ActorCriticPolicy._build at 0x7f2d18df23a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2d18df2430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d18df24c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2d18df2550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d18df25e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d18df2670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d18df2700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2d18ded5d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670380935644713629, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO3uFL5cgR07C4MHPBJUt7mzqLC8Gg+hOgAAgD8AAIA/mpFmOwW9sz/bcbY+WcqYvrBchbtATqW9AAAAAAAAAACAasy9jxoUuuLxUjlmJUk0JEOEu33ie7gAAIA/AACAP2bKqL3D2VK6OLyfO3V+lzYcnC84v0aUNQAAgD8AAIA/piW/ve8XVT8/6Yg9bdaTvvMjEr29r1E9AAAAAAAAAADNbJw6hRPpuZH9SDjeE34z0dfMOq3NZrcAAIA/AACAP00FGL1Ia4W6DaTdurx1nDTseOK6xkf8OQAAgD8AAIA/Q5mJPj/tZz+IFMA+74MQv7SWtj4gWj69AAAAAAAAAABm92G+u+aMPyP2Q78TV8m+IblrPXYaGr4AAAAAAAAAAGM+iL7mQ24/Hy6ePJBSnr6Qy7K9oQETPgAAAAAAAAAAAHTKO66PgboTmbE7bC/FtWDOLjtC+Le0AACAPwAAgD+zTyy9X4iRP9fxKL5jm5S+V7bNvfy/lb0AAAAAAAAAAJpnurwpwEG66M6KOwokKjjpQka7TglfuAAAgD8AAIA/TR+Cva5nmrrh64877ACIOIcFFTvQ4qK5AACAPwAAgD9mftC7XPNIuoSRjznW7E+2m0ZJOkK0PrUAAIA/AACAP1McLb5vBmQ+7tKMPGKnfL7yiwq9r1c0PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdNAlHHpGYkCUhpRSlIwBbJRN6AOMAXSUR0CVokfhuO0cdX2UKGgGaAloD0MIAVEwYwrkQUCUhpRSlGgVTQsBaBZHQJWj8DcM3Id1fZQoaAZoCWgPQwjHoBNCBzlgQJSGlFKUaBVN6ANoFkdAlaP/JFLFoHV9lChoBmgJaA9DCLiP3Jp0blBAlIaUUpRoFUueaBZHQJWk0jxCpm51fZQoaAZoCWgPQwjaq4+HvgFmQJSGlFKUaBVN6ANoFkdAlaWHFDOTq3V9lChoBmgJaA9DCIJzRpR23mRAlIaUUpRoFU3oA2gWR0CVp/jy4FzNdX2UKGgGaAloD0MIrz4e+u4TZkCUhpRSlGgVTegDaBZHQJWqIsz2vjh1fZQoaAZoCWgPQwjEXb2KjPtkQJSGlFKUaBVN6ANoFkdAlav0BS1ma3V9lChoBmgJaA9DCOi9MQQAPzFAlIaUUpRoFUv4aBZHQJWuALORkmR1fZQoaAZoCWgPQwiNXg1QmlthQJSGlFKUaBVN6ANoFkdAlbQiI+GGmHV9lChoBmgJaA9DCO4kIvwLM2JAlIaUUpRoFU3oA2gWR0CVvJMURFqjdX2UKGgGaAloD0MIuRgD6zh8ZUCUhpRSlGgVTegDaBZHQJXWubG3nZF1fZQoaAZoCWgPQwgFhxdEJF1xQJSGlFKUaBVN7AFoFkdAldeOc+aBqnV9lChoBmgJaA9DCLovZ7arj2RAlIaUUpRoFU3oA2gWR0CV18kgwGnodX2UKGgGaAloD0MIwvhp3BvHYkCUhpRSlGgVTegDaBZHQJXZatp22Xt1fZQoaAZoCWgPQwiMuWsJuRVxQJSGlFKUaBVNdwNoFkdAldzSmhufmXV9lChoBmgJaA9DCHXKoxthlWBAlIaUUpRoFU3oA2gWR0CV382/zreJdX2UKGgGaAloD0MIlxx3SgdpYkCUhpRSlGgVTegDaBZHQJXl2rfcesB1fZQoaAZoCWgPQwg2eF+VC6RmQJSGlFKUaBVN6ANoFkdAleu9aY/mknV9lChoBmgJaA9DCOviNhrAtmRAlIaUUpRoFU3oA2gWR0CV689W6shgdX2UKGgGaAloD0MI1sdD392+XkCUhpRSlGgVTegDaBZHQJXsuhzvJBB1fZQoaAZoCWgPQwhyNEdWfpNjQJSGlFKUaBVN6ANoFkdAle2Uh3aBZ3V9lChoBmgJaA9DCJp9HqO8hGFAlIaUUpRoFU3oA2gWR0CV8D3225QQdX2UKGgGaAloD0MIg/xs5DpbZUCUhpRSlGgVTegDaBZHQJX0eQp4KQd1fZQoaAZoCWgPQwgFwk6x6jljQJSGlFKUaBVN6ANoFkdAlfacmWt2cXV9lChoBmgJaA9DCEvMs5JWFDFAlIaUUpRoFU0GAWgWR0CV+qi+tbLVdX2UKGgGaAloD0MIm6vmOSJRYECUhpRSlGgVTegDaBZHQJX8p02cawV1fZQoaAZoCWgPQwiR8/4/TgFmQJSGlFKUaBVN6ANoFkdAlgTMqrilznV9lChoBmgJaA9DCGZJgJpapkNAlIaUUpRoFUvlaBZHQJYcS3Zwn6V1fZQoaAZoCWgPQwju7CsP0ipgQJSGlFKUaBVN6ANoFkdAlh9XM+u/13V9lChoBmgJaA9DCOyi6IEPp2FAlIaUUpRoFU3oA2gWR0CWIDfHggoxdX2UKGgGaAloD0MIQni0cUT+YECUhpRSlGgVTegDaBZHQJYgdJBgNPR1fZQoaAZoCWgPQwjrU47J4oJlQJSGlFKUaBVN6ANoFkdAliIIwmE5AHV9lChoBmgJaA9DCGzsEtXby2FAlIaUUpRoFU3oA2gWR0CWJXM5wOvudX2UKGgGaAloD0MI5ssLsI/hYkCUhpRSlGgVTegDaBZHQJYoXMzMzM11fZQoaAZoCWgPQwj4pumzg45kQJSGlFKUaBVN6ANoFkdAli5nTZxrBXV9lChoBmgJaA9DCH8vhQdNk2NAlIaUUpRoFU3oA2gWR0CWNFfr8iwCdX2UKGgGaAloD0MIsdtnlZk8Z0CUhpRSlGgVTegDaBZHQJY0Z4GD+R51fZQoaAZoCWgPQwgMVwdAXJBiQJSGlFKUaBVN6ANoFkdAljVI5o4+83V9lChoBmgJaA9DCCNozCTqEmBAlIaUUpRoFU3oA2gWR0CWOI81n/T9dX2UKGgGaAloD0MIB7R0BVs0Y0CUhpRSlGgVTegDaBZHQJY8y9xp+MJ1fZQoaAZoCWgPQwjdW5GYoKFYQJSGlFKUaBVN6ANoFkdAlj74Ui6g/XV9lChoBmgJaA9DCBzuI7emGGZAlIaUUpRoFU3oA2gWR0CWQrZU1hsqdX2UKGgGaAloD0MIYwrWOBv8YUCUhpRSlGgVTegDaBZHQJZMmF9KEnN1fZQoaAZoCWgPQwg5ud+hqApiQJSGlFKUaBVN6ANoFkdAllHJLuhK2HV9lChoBmgJaA9DCAN9Ik+SWkpAlIaUUpRoFU0OAWgWR0CWUfZa3ZwodX2UKGgGaAloD0MIgh/VsF9GY0CUhpRSlGgVTegDaBZHQJZmhFQVKwp1fZQoaAZoCWgPQwiVRszs8+hlQJSGlFKUaBVN6ANoFkdAlmdCLMs6JnV9lChoBmgJaA9DCKwcWmQ7jmZAlIaUUpRoFU3oA2gWR0CWZ389Oh0ydX2UKGgGaAloD0MIobq5+NtGZECUhpRSlGgVTegDaBZHQJZpCCQLeAN1fZQoaAZoCWgPQwgxt3u5z+5nQJSGlFKUaBVN6ANoFkdAlmxRpDeCTXV9lChoBmgJaA9DCIc2ABuQEmFAlIaUUpRoFU3oA2gWR0CWbxLyMDOkdX2UKGgGaAloD0MIbXTOT3ECZECUhpRSlGgVTegDaBZHQJZ1AZXMhX91fZQoaAZoCWgPQwhbsirCzShhQJSGlFKUaBVN6ANoFkdAlnsGUB4lhXV9lChoBmgJaA9DCL3IBPwakGFAlIaUUpRoFU3oA2gWR0CWexjVx0dSdX2UKGgGaAloD0MIDK65o3/tZECUhpRSlGgVTegDaBZHQJZ8HSBshxJ1fZQoaAZoCWgPQwh002acBrNkQJSGlFKUaBVN6ANoFkdAln+vN/vv0HV9lChoBmgJaA9DCA8Ni1FXNGJAlIaUUpRoFU3oA2gWR0CWhCC5mRNidX2UKGgGaAloD0MIpDUGnZCUZUCUhpRSlGgVTegDaBZHQJaGcGt6ol51fZQoaAZoCWgPQwg/dEF9SwhhQJSGlFKUaBVN6ANoFkdAlpVKcurZJ3V9lChoBmgJaA9DCAQ7/guEBmNAlIaUUpRoFU3oA2gWR0CWms+PikwfdX2UKGgGaAloD0MISZ2AJsLRYUCUhpRSlGgVTegDaBZHQJaa/s2NvO11fZQoaAZoCWgPQwhZMVwdABtoQJSGlFKUaBVN6ANoFkdAlq+WTcIqsnV9lChoBmgJaA9DCJAuNq2UeGRAlIaUUpRoFU3oA2gWR0CWsGyAxzq9dX2UKGgGaAloD0MIX0ax3NLjYECUhpRSlGgVTegDaBZHQJawqNNrTH91fZQoaAZoCWgPQwh5ILJIk4lmQJSGlFKUaBVN6ANoFkdAlrIK4YrJ83V9lChoBmgJaA9DCAPtDimGvWFAlIaUUpRoFU3oA2gWR0CWtQgEEC/5dX2UKGgGaAloD0MIM2yU9ZvlYECUhpRSlGgVTegDaBZHQJa3oMRYigV1fZQoaAZoCWgPQwjII7iRshpjQJSGlFKUaBVN6ANoFkdAlr0wAdXDFnV9lChoBmgJaA9DCJEsYAK3x2RAlIaUUpRoFU3oA2gWR0CWwsollbu/dX2UKGgGaAloD0MIniYz3tb7ZkCUhpRSlGgVTegDaBZHQJbC2WBz3h51fZQoaAZoCWgPQwg0hjlBG+NkQJSGlFKUaBVN6ANoFkdAlsPB8x9G7XV9lChoBmgJaA9DCF99PPTdVmVAlIaUUpRoFU3oA2gWR0CWx26p5u63dX2UKGgGaAloD0MIs874vjjtYUCUhpRSlGgVTegDaBZHQJbMCVmjCYV1fZQoaAZoCWgPQwiIuaRquz9uQJSGlFKUaBVNwgNoFkdAlsxhAbADaHV9lChoBmgJaA9DCEnZImk3CExAlIaUUpRoFU0UAWgWR0CW3AH9FWn1dX2UKGgGaAloD0MIvtpRnKMEZ0CUhpRSlGgVTegDaBZHQJbdnkYGdI51fZQoaAZoCWgPQwh2ptB5DQdnQJSGlFKUaBVN6ANoFkdAluLzl5nlGXV9lChoBmgJaA9DCJRPj22Z42RAlIaUUpRoFU3oA2gWR0CW4yGy5Zr6dX2UKGgGaAloD0MI1QeSd46HZkCUhpRSlGgVTegDaBZHQJbldnscABF1fZQoaAZoCWgPQwjyCG6kbKRhQJSGlFKUaBVN6ANoFkdAluYmn4wh4nV9lChoBmgJaA9DCEm+EkgJUmNAlIaUUpRoFU3oA2gWR0CW5lqsU7CBdX2UKGgGaAloD0MIDXIXYQrfY0CUhpRSlGgVTegDaBZHQJb5lqSHM2Z1fZQoaAZoCWgPQwhod0gxwNthQJSGlFKUaBVN6ANoFkdAlvxfvfCQ93V9lChoBmgJaA9DCLnH0ocuyERAlIaUUpRoFU0SAWgWR0CW/WCOmzjWdX2UKGgGaAloD0MIlBEXgMYnYUCUhpRSlGgVTegDaBZHQJb+zrMTviN1fZQoaAZoCWgPQwg/HCRE+fRhQJSGlFKUaBVN6ANoFkdAlwPmL5ylvnV9lChoBmgJaA9DCL1xUpj3zDFAlIaUUpRoFUv1aBZHQJcI8VpKzzF1fZQoaAZoCWgPQwgv/UtSGUFjQJSGlFKUaBVN6ANoFkdAlwlUlzEJjXV9lChoBmgJaA9DCIxn0NC/dGdAlIaUUpRoFU3oA2gWR0CXCWVFQVKxdX2UKGgGaAloD0MIwOjy5vCtYkCUhpRSlGgVTegDaBZHQJcKTZIxxkx1fZQoaAZoCWgPQwiXkXpPZR5gQJSGlFKUaBVN6ANoFkdAlw3YRNATqXV9lChoBmgJaA9DCChGlsyx1WRAlIaUUpRoFU3oA2gWR0CXEnVdonKGdX2UKGgGaAloD0MIQzunWSBqZUCUhpRSlGgVTegDaBZHQJchRY6nzhB1fZQoaAZoCWgPQwhx58JIr2JkQJSGlFKUaBVN6ANoFkdAlyeKa9bosHV9lChoBmgJaA9DCCoCnN5FUGNAlIaUUpRoFU3oA2gWR0CXJ7Ss8xKydX2UKGgGaAloD0MIpOTVOQYBaECUhpRSlGgVTegDaBZHQJcp9b5dnkF1fZQoaAZoCWgPQwj44ov2+P1iQJSGlFKUaBVN6ANoFkdAlyqizollb3V9lChoBmgJaA9DCG1UpwNZvWVAlIaUUpRoFU3oA2gWR0CXKteqJdjYdX2UKGgGaAloD0MI9aCgFC2kZECUhpRSlGgVTegDaBZHQJcsFIxxkup1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:710d4ef1a3b3b72f855b2fb55cee9524edccb085547e4598fe5d82d17710e694
3
+ size 147150
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d18df2160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d18df21f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d18df2280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d18df2310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2d18df23a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2d18df2430>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d18df24c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2d18df2550>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d18df25e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d18df2670>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d18df2700>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f2d18ded5d0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670380935644713629,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO3uFL5cgR07C4MHPBJUt7mzqLC8Gg+hOgAAgD8AAIA/mpFmOwW9sz/bcbY+WcqYvrBchbtATqW9AAAAAAAAAACAasy9jxoUuuLxUjlmJUk0JEOEu33ie7gAAIA/AACAP2bKqL3D2VK6OLyfO3V+lzYcnC84v0aUNQAAgD8AAIA/piW/ve8XVT8/6Yg9bdaTvvMjEr29r1E9AAAAAAAAAADNbJw6hRPpuZH9SDjeE34z0dfMOq3NZrcAAIA/AACAP00FGL1Ia4W6DaTdurx1nDTseOK6xkf8OQAAgD8AAIA/Q5mJPj/tZz+IFMA+74MQv7SWtj4gWj69AAAAAAAAAABm92G+u+aMPyP2Q78TV8m+IblrPXYaGr4AAAAAAAAAAGM+iL7mQ24/Hy6ePJBSnr6Qy7K9oQETPgAAAAAAAAAAAHTKO66PgboTmbE7bC/FtWDOLjtC+Le0AACAPwAAgD+zTyy9X4iRP9fxKL5jm5S+V7bNvfy/lb0AAAAAAAAAAJpnurwpwEG66M6KOwokKjjpQka7TglfuAAAgD8AAIA/TR+Cva5nmrrh64877ACIOIcFFTvQ4qK5AACAPwAAgD9mftC7XPNIuoSRjznW7E+2m0ZJOkK0PrUAAIA/AACAP1McLb5vBmQ+7tKMPGKnfL7yiwq9r1c0PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdNAlHHpGYkCUhpRSlIwBbJRN6AOMAXSUR0CVokfhuO0cdX2UKGgGaAloD0MIAVEwYwrkQUCUhpRSlGgVTQsBaBZHQJWj8DcM3Id1fZQoaAZoCWgPQwjHoBNCBzlgQJSGlFKUaBVN6ANoFkdAlaP/JFLFoHV9lChoBmgJaA9DCLiP3Jp0blBAlIaUUpRoFUueaBZHQJWk0jxCpm51fZQoaAZoCWgPQwjaq4+HvgFmQJSGlFKUaBVN6ANoFkdAlaWHFDOTq3V9lChoBmgJaA9DCIJzRpR23mRAlIaUUpRoFU3oA2gWR0CVp/jy4FzNdX2UKGgGaAloD0MIrz4e+u4TZkCUhpRSlGgVTegDaBZHQJWqIsz2vjh1fZQoaAZoCWgPQwjEXb2KjPtkQJSGlFKUaBVN6ANoFkdAlav0BS1ma3V9lChoBmgJaA9DCOi9MQQAPzFAlIaUUpRoFUv4aBZHQJWuALORkmR1fZQoaAZoCWgPQwiNXg1QmlthQJSGlFKUaBVN6ANoFkdAlbQiI+GGmHV9lChoBmgJaA9DCO4kIvwLM2JAlIaUUpRoFU3oA2gWR0CVvJMURFqjdX2UKGgGaAloD0MIuRgD6zh8ZUCUhpRSlGgVTegDaBZHQJXWubG3nZF1fZQoaAZoCWgPQwgFhxdEJF1xQJSGlFKUaBVN7AFoFkdAldeOc+aBqnV9lChoBmgJaA9DCLovZ7arj2RAlIaUUpRoFU3oA2gWR0CV18kgwGnodX2UKGgGaAloD0MIwvhp3BvHYkCUhpRSlGgVTegDaBZHQJXZatp22Xt1fZQoaAZoCWgPQwiMuWsJuRVxQJSGlFKUaBVNdwNoFkdAldzSmhufmXV9lChoBmgJaA9DCHXKoxthlWBAlIaUUpRoFU3oA2gWR0CV382/zreJdX2UKGgGaAloD0MIlxx3SgdpYkCUhpRSlGgVTegDaBZHQJXl2rfcesB1fZQoaAZoCWgPQwg2eF+VC6RmQJSGlFKUaBVN6ANoFkdAleu9aY/mknV9lChoBmgJaA9DCOviNhrAtmRAlIaUUpRoFU3oA2gWR0CV689W6shgdX2UKGgGaAloD0MI1sdD392+XkCUhpRSlGgVTegDaBZHQJXsuhzvJBB1fZQoaAZoCWgPQwhyNEdWfpNjQJSGlFKUaBVN6ANoFkdAle2Uh3aBZ3V9lChoBmgJaA9DCJp9HqO8hGFAlIaUUpRoFU3oA2gWR0CV8D3225QQdX2UKGgGaAloD0MIg/xs5DpbZUCUhpRSlGgVTegDaBZHQJX0eQp4KQd1fZQoaAZoCWgPQwgFwk6x6jljQJSGlFKUaBVN6ANoFkdAlfacmWt2cXV9lChoBmgJaA9DCEvMs5JWFDFAlIaUUpRoFU0GAWgWR0CV+qi+tbLVdX2UKGgGaAloD0MIm6vmOSJRYECUhpRSlGgVTegDaBZHQJX8p02cawV1fZQoaAZoCWgPQwiR8/4/TgFmQJSGlFKUaBVN6ANoFkdAlgTMqrilznV9lChoBmgJaA9DCGZJgJpapkNAlIaUUpRoFUvlaBZHQJYcS3Zwn6V1fZQoaAZoCWgPQwju7CsP0ipgQJSGlFKUaBVN6ANoFkdAlh9XM+u/13V9lChoBmgJaA9DCOyi6IEPp2FAlIaUUpRoFU3oA2gWR0CWIDfHggoxdX2UKGgGaAloD0MIQni0cUT+YECUhpRSlGgVTegDaBZHQJYgdJBgNPR1fZQoaAZoCWgPQwjrU47J4oJlQJSGlFKUaBVN6ANoFkdAliIIwmE5AHV9lChoBmgJaA9DCGzsEtXby2FAlIaUUpRoFU3oA2gWR0CWJXM5wOvudX2UKGgGaAloD0MI5ssLsI/hYkCUhpRSlGgVTegDaBZHQJYoXMzMzM11fZQoaAZoCWgPQwj4pumzg45kQJSGlFKUaBVN6ANoFkdAli5nTZxrBXV9lChoBmgJaA9DCH8vhQdNk2NAlIaUUpRoFU3oA2gWR0CWNFfr8iwCdX2UKGgGaAloD0MIsdtnlZk8Z0CUhpRSlGgVTegDaBZHQJY0Z4GD+R51fZQoaAZoCWgPQwgMVwdAXJBiQJSGlFKUaBVN6ANoFkdAljVI5o4+83V9lChoBmgJaA9DCCNozCTqEmBAlIaUUpRoFU3oA2gWR0CWOI81n/T9dX2UKGgGaAloD0MIB7R0BVs0Y0CUhpRSlGgVTegDaBZHQJY8y9xp+MJ1fZQoaAZoCWgPQwjdW5GYoKFYQJSGlFKUaBVN6ANoFkdAlj74Ui6g/XV9lChoBmgJaA9DCBzuI7emGGZAlIaUUpRoFU3oA2gWR0CWQrZU1hsqdX2UKGgGaAloD0MIYwrWOBv8YUCUhpRSlGgVTegDaBZHQJZMmF9KEnN1fZQoaAZoCWgPQwg5ud+hqApiQJSGlFKUaBVN6ANoFkdAllHJLuhK2HV9lChoBmgJaA9DCAN9Ik+SWkpAlIaUUpRoFU0OAWgWR0CWUfZa3ZwodX2UKGgGaAloD0MIgh/VsF9GY0CUhpRSlGgVTegDaBZHQJZmhFQVKwp1fZQoaAZoCWgPQwiVRszs8+hlQJSGlFKUaBVN6ANoFkdAlmdCLMs6JnV9lChoBmgJaA9DCKwcWmQ7jmZAlIaUUpRoFU3oA2gWR0CWZ389Oh0ydX2UKGgGaAloD0MIobq5+NtGZECUhpRSlGgVTegDaBZHQJZpCCQLeAN1fZQoaAZoCWgPQwgxt3u5z+5nQJSGlFKUaBVN6ANoFkdAlmxRpDeCTXV9lChoBmgJaA9DCIc2ABuQEmFAlIaUUpRoFU3oA2gWR0CWbxLyMDOkdX2UKGgGaAloD0MIbXTOT3ECZECUhpRSlGgVTegDaBZHQJZ1AZXMhX91fZQoaAZoCWgPQwhbsirCzShhQJSGlFKUaBVN6ANoFkdAlnsGUB4lhXV9lChoBmgJaA9DCL3IBPwakGFAlIaUUpRoFU3oA2gWR0CWexjVx0dSdX2UKGgGaAloD0MIDK65o3/tZECUhpRSlGgVTegDaBZHQJZ8HSBshxJ1fZQoaAZoCWgPQwh002acBrNkQJSGlFKUaBVN6ANoFkdAln+vN/vv0HV9lChoBmgJaA9DCA8Ni1FXNGJAlIaUUpRoFU3oA2gWR0CWhCC5mRNidX2UKGgGaAloD0MIpDUGnZCUZUCUhpRSlGgVTegDaBZHQJaGcGt6ol51fZQoaAZoCWgPQwg/dEF9SwhhQJSGlFKUaBVN6ANoFkdAlpVKcurZJ3V9lChoBmgJaA9DCAQ7/guEBmNAlIaUUpRoFU3oA2gWR0CWms+PikwfdX2UKGgGaAloD0MISZ2AJsLRYUCUhpRSlGgVTegDaBZHQJaa/s2NvO11fZQoaAZoCWgPQwhZMVwdABtoQJSGlFKUaBVN6ANoFkdAlq+WTcIqsnV9lChoBmgJaA9DCJAuNq2UeGRAlIaUUpRoFU3oA2gWR0CWsGyAxzq9dX2UKGgGaAloD0MIX0ax3NLjYECUhpRSlGgVTegDaBZHQJawqNNrTH91fZQoaAZoCWgPQwh5ILJIk4lmQJSGlFKUaBVN6ANoFkdAlrIK4YrJ83V9lChoBmgJaA9DCAPtDimGvWFAlIaUUpRoFU3oA2gWR0CWtQgEEC/5dX2UKGgGaAloD0MIM2yU9ZvlYECUhpRSlGgVTegDaBZHQJa3oMRYigV1fZQoaAZoCWgPQwjII7iRshpjQJSGlFKUaBVN6ANoFkdAlr0wAdXDFnV9lChoBmgJaA9DCJEsYAK3x2RAlIaUUpRoFU3oA2gWR0CWwsollbu/dX2UKGgGaAloD0MIniYz3tb7ZkCUhpRSlGgVTegDaBZHQJbC2WBz3h51fZQoaAZoCWgPQwg0hjlBG+NkQJSGlFKUaBVN6ANoFkdAlsPB8x9G7XV9lChoBmgJaA9DCF99PPTdVmVAlIaUUpRoFU3oA2gWR0CWx26p5u63dX2UKGgGaAloD0MIs874vjjtYUCUhpRSlGgVTegDaBZHQJbMCVmjCYV1fZQoaAZoCWgPQwiIuaRquz9uQJSGlFKUaBVNwgNoFkdAlsxhAbADaHV9lChoBmgJaA9DCEnZImk3CExAlIaUUpRoFU0UAWgWR0CW3AH9FWn1dX2UKGgGaAloD0MIvtpRnKMEZ0CUhpRSlGgVTegDaBZHQJbdnkYGdI51fZQoaAZoCWgPQwh2ptB5DQdnQJSGlFKUaBVN6ANoFkdAluLzl5nlGXV9lChoBmgJaA9DCJRPj22Z42RAlIaUUpRoFU3oA2gWR0CW4yGy5Zr6dX2UKGgGaAloD0MI1QeSd46HZkCUhpRSlGgVTegDaBZHQJbldnscABF1fZQoaAZoCWgPQwjyCG6kbKRhQJSGlFKUaBVN6ANoFkdAluYmn4wh4nV9lChoBmgJaA9DCEm+EkgJUmNAlIaUUpRoFU3oA2gWR0CW5lqsU7CBdX2UKGgGaAloD0MIDXIXYQrfY0CUhpRSlGgVTegDaBZHQJb5lqSHM2Z1fZQoaAZoCWgPQwhod0gxwNthQJSGlFKUaBVN6ANoFkdAlvxfvfCQ93V9lChoBmgJaA9DCLnH0ocuyERAlIaUUpRoFU0SAWgWR0CW/WCOmzjWdX2UKGgGaAloD0MIlBEXgMYnYUCUhpRSlGgVTegDaBZHQJb+zrMTviN1fZQoaAZoCWgPQwg/HCRE+fRhQJSGlFKUaBVN6ANoFkdAlwPmL5ylvnV9lChoBmgJaA9DCL1xUpj3zDFAlIaUUpRoFUv1aBZHQJcI8VpKzzF1fZQoaAZoCWgPQwgv/UtSGUFjQJSGlFKUaBVN6ANoFkdAlwlUlzEJjXV9lChoBmgJaA9DCIxn0NC/dGdAlIaUUpRoFU3oA2gWR0CXCWVFQVKxdX2UKGgGaAloD0MIwOjy5vCtYkCUhpRSlGgVTegDaBZHQJcKTZIxxkx1fZQoaAZoCWgPQwiXkXpPZR5gQJSGlFKUaBVN6ANoFkdAlw3YRNATqXV9lChoBmgJaA9DCChGlsyx1WRAlIaUUpRoFU3oA2gWR0CXEnVdonKGdX2UKGgGaAloD0MIQzunWSBqZUCUhpRSlGgVTegDaBZHQJchRY6nzhB1fZQoaAZoCWgPQwhx58JIr2JkQJSGlFKUaBVN6ANoFkdAlyeKa9bosHV9lChoBmgJaA9DCCoCnN5FUGNAlIaUUpRoFU3oA2gWR0CXJ7Ss8xKydX2UKGgGaAloD0MIpOTVOQYBaECUhpRSlGgVTegDaBZHQJcp9b5dnkF1fZQoaAZoCWgPQwj44ov2+P1iQJSGlFKUaBVN6ANoFkdAlyqizollb3V9lChoBmgJaA9DCG1UpwNZvWVAlIaUUpRoFU3oA2gWR0CXKteqJdjYdX2UKGgGaAloD0MI9aCgFC2kZECUhpRSlGgVTegDaBZHQJcsFIxxkup1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:678d4de606e33d3e3e9c0e856333e93778f0edd9050c6de0f268336c9895cb19
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0584f41e5909bf8c79f6cce663a75117dfbc32b19562b3ea05416e0f7ee2a9ab
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (196 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 260.9779023452888, "std_reward": 15.01876639958356, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T03:15:21.112308"}