File size: 14,365 Bytes
51602d3 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ba05d3d2dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ba05d3d2e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ba05d3d2ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ba05d3d2f80>", "_build": "<function ActorCriticPolicy._build at 0x7ba05d3d3010>", "forward": "<function ActorCriticPolicy.forward at 0x7ba05d3d30a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ba05d3d3130>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ba05d3d31c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ba05d3d3250>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ba05d3d32e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ba05d3d3370>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ba05d3d3400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ba05d574880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1720638824939020304, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAPOHFz5QjuM+htqAvS89Fr99KBg+/Xe3vQAAAAAAAAAAzf8svVz/V7qefrA94JN7tJGlEzt8RZqzAAAAAAAAAACNUEo+7LYwPzr/4j0qDCe/f8SJPmKkt70AAAAAAAAAANpSyj32qCe6i3LBNjT0eDIP8C472M/htQAAgD8AAIA/5lw2PizTsDyqy7y+Ndi8vT5OR7wxHj8/AACAPwAAAACTRxS+NnYvvF6OyLuBv2C6vsmPPR+VNTsAAIA/AACAP83noDz2tHW6lqosNFu7Ia98Amk6DxOeswAAgD8AAIA/lkaPPgqhGj+2eH4+dKU7v6gpHT+N+XM9AAAAAAAAAABmDoo9o+utP5Q4BD8sza2+cmo3PdZodj4AAAAAAAAAAMa3NL5JCJg+smdNPjIKAr/CFei9QkNFPgAAAAAAAAAA5rURvRKJuD9LTmG+HIHEveU5J70Q4eS9AAAAAAAAAADNfp+9w2ctPUwAMD40yX++n/frPPAVAT0AAAAAAAAAALoohj49J68+YYIRvkaQIb/xv6c++j+QvgAAAAAAAAAAc1QrPj9Adj8ysWU+OexLv5b8gT6PXUc9AAAAAAAAAAANx8M90JypPxSFLz+HDei+1IgkPZtdfj4AAAAAAAAAAKCDFD42SqQ+e5H0vW576b5nbhI+7p74vQAAAAAAAAAAWtAxPhQzjLyq/Qq9py0kvR5z5r3lpeE9AAAAAAAAAABmDqW9w7RTvHE4ED4B2a08cj9gPZiwbzwAAAAAAAAAAOZtCD24M7i7RF6eO1NGqTwG5Re96kyOPQAAgD8AAIA/03REvioEVT4O9UE+FB/wvl0hI76jMf09AAAAAAAAAADNfDQ9UgjAuSZ8/LwWVjcxcM67uz60kzMAAIA/AACAP5o35r1L75Y/1r/6vhn5NL/3U0C+6714vgAAAAAAAAAAoBd2vt2Yxz5sFo4+a64gv0LsLr5CzYI+AAAAAAAAAABAnco9eHaDPDPIkb6xMUK+DIn6vURon70AAAAAAAAAADMTjrrfhfE84uNnPdrTUb7Upw69/khLPQAAAAAAAAAAcy7FPWJlHD51THa+LUvpvr9ZEz0KAzS+AAAAAAAAAADN8HK9cHGOP5iiH75iP12/N375ve3q9TwAAAAAAAAAAK3sCz6tJlA/HmuzPWTNRr+8/0M+GCHsPAAAAAAAAAAADaAePnYPHbyOthw8qad3ujfOhr02cE27AACAPwAAgD+AFju9ex6vulQPIbjTjBmz8x3iuWZhODcAAIA/AACAP2ZQgb1W8jQ/oPxgvU4Ec799mau9yrsBvQAAAAAAAAAApiUfvgC6rj4dkn09kZY7v+b26b0b3849AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIwut0V8CyMAWyUS6qMAXSUR0CqOobyH2ytdX2UKGgGR0BzIpFZxJd0aAdLqGgIR0CqOpEeZG8VdX2UKGgGR0BwR/6GgzxgaAdLqGgIR0CqOrm3vx6OdX2UKGgGR0BlX0oc7yQQaAdN6ANoCEdAqjrCDXe3yHV9lChoBkdAcNPSTyJ9A2gHS5toCEdAqjrI+t8uz3V9lChoBkdAb4+McZLqU2gHS5doCEdAqjrjp5eJHnV9lChoBkdAchsIVM23rmgHS7JoCEdAqjsrawljVnV9lChoBkdAcaXJ0nw5N2gHS7hoCEdAqjsoXVLBbnV9lChoBkdAUqg3VCojwGgHS2RoCEdAqjs7HMlkY3V9lChoBkdAcflLSeAd4mgHS7poCEdAqjs6GvfTC3V9lChoBkdAbzI3DvVmSWgHS49oCEdAqjs/vKEFn3V9lChoBkdAchKDlo11n2gHS69oCEdAqjuOiBXjl3V9lChoBkdAcN2D/2kBS2gHS7RoCEdAqju8Nc4YJnV9lChoBkdAchSATIvJzWgHS/NoCEdAqjvMoa1kUnV9lChoBkdAch5kl/pdKWgHS4xoCEdAqjvbv/io9HV9lChoBkdAcVe6Ae7tiWgHS7JoCEdAqjwOZRbbDnV9lChoBkdAcc+FTNt65WgHS49oCEdAqjwgDJU5uXV9lChoBkdAcj0yfthNNGgHS8toCEdAqjxdqN6w+3V9lChoBkdAczjc81XNkmgHS8hoCEdAqj1J0lqrR3V9lChoBkdAboLTIeYD1WgHS5toCEdAqj2XzBhx53V9lChoBkdAceIH+IdlumgHS4hoCEdAqj3bah6By3V9lChoBkdAc88zreIl+mgHS8doCEdAqj3yFEiMYXV9lChoBkdAceTlyzXz2GgHS8hoCEdAqj4fe54GEHV9lChoBkdAcusns9jgAWgHS8xoCEdAqj45QYUFjnV9lChoBkdAco9M98qnWWgHS65oCEdAqj5iX6ZYxXV9lChoBkdATdvpljEvTWgHS1poCEdAqj7fQ4S6D3V9lChoBkdAcbKhMajveGgHS69oCEdAqj8+87IT5HV9lChoBkdAcU/EEkjX4GgHS55oCEdAqj9OivgWJ3V9lChoBkdAccMHhjvuxGgHS8loCEdAqj9VVFQVK3V9lChoBkdAcyDiW3Sa3WgHS8loCEdAqj9iD/VAiXV9lChoBkdAcX2dilSCOGgHS75oCEdAqj9om9g4O3V9lChoBkdAdEF7jDKoymgHS+RoCEdAqj+gK0D2anV9lChoBkdActHttALRbGgHS9BoCEdAqj+tyYG+snV9lChoBkdAcnV0/nnuA2gHS7FoCEdAqj+/vF3pwHV9lChoBkdAckR+tbLU1GgHS/poCEdAqj+/A9FF2HV9lChoBkdAcqNSwGGEf2gHS81oCEdAqj/sWO6un3V9lChoBkdAcYp8FY+0PmgHS6VoCEdAqkAAxDb8FnV9lChoBkdAcvZlrM1TBWgHS7loCEdAqkAUh5gPVnV9lChoBkdAcNSOzIFNcmgHS79oCEdAqkAawMYuTXV9lChoBkdAcXQm3fAKv2gHS6NoCEdAqkA07nxJ/XV9lChoBkdAb+lTaTOgQGgHS5toCEdAqkBvE87p3XV9lChoBkdAcdZInjQzDWgHS6xoCEdAqkCEuvllsnV9lChoBkdAckEkVvddmmgHS9FoCEdAqkCsJ0GNaXV9lChoBkdAZ2QXkYGdJGgHTegDaAhHQKpAq7nPmgd1fZQoaAZHQHCP2Z3LV4JoB0uzaAhHQKpAyWfseGR1fZQoaAZHQHHhkX531SRoB0vLaAhHQKpBnX4j8k51fZQoaAZHQHDD22CuloFoB0uXaAhHQKpBxM+u/1x1fZQoaAZHQHDq3CCSRr9oB0unaAhHQKpB3kkrwvx1fZQoaAZHQHDvA22oegdoB0uNaAhHQKpB8DIRywR1fZQoaAZHQHFF3uAqd6NoB0uXaAhHQKpCTBHkLhJ1fZQoaAZHQHI2E7Sy+pRoB0upaAhHQKpCYgi/wiJ1fZQoaAZHQEMtQ+lj3EhoB0tpaAhHQKpDB1dPci51fZQoaAZHQHBYnH7xd6doB0uUaAhHQKpDGJRfnfV1fZQoaAZHQHMIjOC5EtxoB0uiaAhHQKpDN2MbWEt1fZQoaAZHQHCe5ItlI3BoB0ukaAhHQKpDNz8xbjd1fZQoaAZHQHKIUZFXq7loB0vaaAhHQKpDUOhkAgh1fZQoaAZHQHHmr3K0UoNoB0u5aAhHQKpDV4eLehx1fZQoaAZHQHK+r9If8uVoB0vXaAhHQKpDgSOinHh1fZQoaAZHQHA9Ej5bhWJoB0uhaAhHQKpDlYQrc0t1fZQoaAZHQG9O4ywfQrtoB0udaAhHQKpDoUnogV51fZQoaAZHQHEBlc+qzZ9oB0u6aAhHQKpDpUgjhUB1fZQoaAZHQG9fHEETxoZoB0usaAhHQKpEAUQCjlB1fZQoaAZHQHE7ueJ53TxoB0u8aAhHQKpEKuU2UB51fZQoaAZHQHRMHIU8FINoB0vJaAhHQKpELnGKhtd1fZQoaAZHQHMKB+BpYcNoB0vMaAhHQKpES4tHxz91fZQoaAZHQHIKmwFC9h9oB0uwaAhHQKpEVIAfdRB1fZQoaAZHQHBKa5LAYYRoB0umaAhHQKpEWb1h9b51fZQoaAZHQHMZKRdQfp5oB0veaAhHQKpEbmnwXqJ1fZQoaAZHQHIHRxkupS9oB0vEaAhHQKpEbG8274B1fZQoaAZHQHMLpHAh0QtoB0vmaAhHQKpEeltTDO11fZQoaAZHQHM1KPwNLDhoB0u3aAhHQKpEliuMdcV1fZQoaAZHQHGYLwSamXRoB0vIaAhHQKpEuH0se4l1fZQoaAZHQHJMaUu+RHRoB0ugaAhHQKpE1xxT8511fZQoaAZHQGFuv0yxiXpoB03oA2gIR0CqRO39aUzLdX2UKGgGR0Bz2P6YVqN7aAdL8mgIR0CqRQKUVzp5dX2UKGgGR0BzIiIznA6/aAdL0GgIR0CqRcn7xd6cdX2UKGgGR0Bwb1WfbsWwaAdLlmgIR0CqRfFqSHM2dX2UKGgGR0BxGKryUcGUaAdLvmgIR0CqRfm16Vt5dX2UKGgGR0ByHH/S6UaAaAdLvGgIR0CqRgCRwIdEdX2UKGgGR0BmFJtgrpaBaAdN6ANoCEdAqkYAWN3np3V9lChoBkdAcoMZtvXK82gHS9ZoCEdAqkYSoZQ53nV9lChoBkdAb5mQwK0D2mgHS5VoCEdAqkZHXXiBG3V9lChoBkdAcEQet0V8C2gHS6NoCEdAqkZlcB2fTXV9lChoBkdAblVo4dZJTWgHS45oCEdAqkaj6LwWnHV9lChoBkdAcK745Lh73WgHS6RoCEdAqkazORkmQnV9lChoBkdAckVS/CZWrGgHS85oCEdAqkbr59E1EXV9lChoBkdAcffwAlv602gHS8doCEdAqkb2ZVn27HV9lChoBkdAcdFTAFgUlGgHS7JoCEdAqkbyADq4Y3V9lChoBkdAcx+W7OE/S2gHS8JoCEdAqkb14/u9e3V9lChoBkdAb14VeKKpDWgHS5FoCEdAqkcD3Zf2K3V9lChoBkdAcDL5Etuk12gHS5FoCEdAqkcU03wTd3V9lChoBkdAcN7E6kqMFWgHS9loCEdAqkdKxTsIFHV9lChoBkdAcMyinHeaa2gHS4VoCEdAqkdeqWC2+nV9lChoBkdAcLVHeJpFkWgHS65oCEdAqkdk3Mpw0nV9lChoBkdAcLKyT6i0wGgHS6doCEdAqkdqmqHXVnV9lChoBkdAcaAYLb5/LGgHS7VoCEdAqkeIv38GcHV9lChoBkdAcnmR2r4nGGgHS+poCEdAqkf1GZuyeXV9lChoBkdAdCoSbH6uXGgHTUUBaAhHQKpIE1UEPlN1fZQoaAZHQHTBdxIatLdoB0vFaAhHQKpIHUH6dlN1fZQoaAZHQHFcJ8BuGbloB0vAaAhHQKpII163RXx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |