DashReza7 commited on
Commit
296e77f
1 Parent(s): 9321465

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-mpnet-base-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:178829
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: who was actor larry parks
16
+ sentences:
17
+ - American stage and movie actor.e eventually did so in tears, only to be blacklisted
18
+ anyway.
19
+ - 'A possum (plural form: possums) is any of about 70 small-to medium-sized arboreal
20
+ marsupial species native to Australia, New Guinea, and Sulawesi (and introduced
21
+ to New Zealand and China). The common brushtail possum was introduced to New Zealand
22
+ by European settlers in an attempt to establish a fur industry. There are no native
23
+ predators of the possum in New Zealand, so its numbers in New Zealand have risen
24
+ to the point where it is considered a serious pest.'
25
+ - A document used to change one or more minor provisions of a living trust or joint
26
+ living trust as an alternative to preparing a new living trust.
27
+ - source_sentence: what is the salary of a person with a biology degree
28
+ sentences:
29
+ - $10 to $25 per hour.
30
+ - $25,290 (2014-2015 academic year)
31
+ - Biology majors who don’t attend a graduate program make a median salary of $51,000
32
+ per year, which is a little below the median salary for graduates from all other
33
+ majors combined. Don’t let that fact stop you from pursuing a degree in biology
34
+ if it’s what you’re passionate about, though. Career Options for Biology Majors.
35
+ Below is a list of common career options for biology majors. This isn’t a comprehensive
36
+ list, as students who major in biology go on to do many interesting things. However,
37
+ this list should give you an idea of the types of work that would be available
38
+ to you with a degree in biology.
39
+ - source_sentence: definition of pretext
40
+ sentences:
41
+ - Peanut butter is an excellent source of nutrition. Required to contain at least
42
+ 90 percent peanuts, it includes more than 30 vitamins and minerals. Peanut butter
43
+ contains no cholesterol or trans fats, according to the National Peanut Board.
44
+ In fact, studies show that peanut butter may even improve your levels of good
45
+ cholesterol.
46
+ - Pretext generally refers to a reason for an action which is false, and offered
47
+ to cover up true motives or intentions. It is a concept sometimes brought up in
48
+ the context of employment discrimination.
49
+ - 20.5 degrees Celsius (68.8 degrees Fahrenheit).
50
+ - source_sentence: what is cyber spoofing
51
+ sentences:
52
+ - Once your question has been posted for at least 1 hour and has at least one answer,
53
+ click on 'Award Best Answer' button next to your chosen answer. 1 Upload failed.
54
+ 2 Please upload a file larger than 100x100 pixels. 3 We are experiencing some
55
+ problems, please try again.
56
+ - Though some vegetable sources of protein contain sufficient values of all essential
57
+ amino acids, many are lower in one or more essential amino acids than animal sources,
58
+ especially lysine, and to a lesser extent methionine and threonine. 1 Proteins
59
+ derived from plant foods (legumes, seeds, grains, and vegetables) can be complete
60
+ as well (examples include chickpeas, black beans, pumpkin seeds, cashews, cauliflower,
61
+ quinoa, pistachios, turnip greens, black-eyed peas, and soy). 2 Most plant foods
62
+ tend to have less of one or more essential amino acid
63
+ - A spoofing attack is a situation in which one person or program successfully masquerades
64
+ as another by falsifying data and thereby gaining an illegitimate advantage.
65
+ - source_sentence: what type of reaction is iron plus oxygen
66
+ sentences:
67
+ - Pearl
68
+ - 'Yes'
69
+ - 'When a metal undergos a combination reaction with oxygen, a metal oxide is formed
70
+ (similarily, a metal halide is formed if reacted with one of the halogens). You
71
+ see the products of this type of reaction whenever you see rust. Rust is the product
72
+ of a combination reaction of iron and oxygen: '
73
+ ---
74
+
75
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
76
+
77
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
78
+
79
+ ## Model Details
80
+
81
+ ### Model Description
82
+ - **Model Type:** Sentence Transformer
83
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
84
+ - **Maximum Sequence Length:** 384 tokens
85
+ - **Output Dimensionality:** 768 tokens
86
+ - **Similarity Function:** Cosine Similarity
87
+ <!-- - **Training Dataset:** Unknown -->
88
+ <!-- - **Language:** Unknown -->
89
+ <!-- - **License:** Unknown -->
90
+
91
+ ### Model Sources
92
+
93
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
94
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
95
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
96
+
97
+ ### Full Model Architecture
98
+
99
+ ```
100
+ SentenceTransformer(
101
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
102
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
103
+ (2): Normalize()
104
+ )
105
+ ```
106
+
107
+ ## Usage
108
+
109
+ ### Direct Usage (Sentence Transformers)
110
+
111
+ First install the Sentence Transformers library:
112
+
113
+ ```bash
114
+ pip install -U sentence-transformers
115
+ ```
116
+
117
+ Then you can load this model and run inference.
118
+ ```python
119
+ from sentence_transformers import SentenceTransformer
120
+
121
+ # Download from the 🤗 Hub
122
+ model = SentenceTransformer("DashReza7/all-mpnet-base-v2_FINETUNED")
123
+ # Run inference
124
+ sentences = [
125
+ 'what type of reaction is iron plus oxygen',
126
+ 'When a metal undergos a combination reaction with oxygen, a metal oxide is formed (similarily, a metal halide is formed if reacted with one of the halogens). You see the products of this type of reaction whenever you see rust. Rust is the product of a combination reaction of iron and oxygen: ',
127
+ 'Pearl',
128
+ ]
129
+ embeddings = model.encode(sentences)
130
+ print(embeddings.shape)
131
+ # [3, 768]
132
+
133
+ # Get the similarity scores for the embeddings
134
+ similarities = model.similarity(embeddings, embeddings)
135
+ print(similarities.shape)
136
+ # [3, 3]
137
+ ```
138
+
139
+ <!--
140
+ ### Direct Usage (Transformers)
141
+
142
+ <details><summary>Click to see the direct usage in Transformers</summary>
143
+
144
+ </details>
145
+ -->
146
+
147
+ <!--
148
+ ### Downstream Usage (Sentence Transformers)
149
+
150
+ You can finetune this model on your own dataset.
151
+
152
+ <details><summary>Click to expand</summary>
153
+
154
+ </details>
155
+ -->
156
+
157
+ <!--
158
+ ### Out-of-Scope Use
159
+
160
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
161
+ -->
162
+
163
+ <!--
164
+ ## Bias, Risks and Limitations
165
+
166
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
167
+ -->
168
+
169
+ <!--
170
+ ### Recommendations
171
+
172
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
173
+ -->
174
+
175
+ ## Training Details
176
+
177
+ ### Training Dataset
178
+
179
+ #### Unnamed Dataset
180
+
181
+
182
+ * Size: 178,829 training samples
183
+ * Columns: <code>anchor</code> and <code>positive</code>
184
+ * Approximate statistics based on the first 1000 samples:
185
+ | | anchor | positive |
186
+ |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
187
+ | type | string | string |
188
+ | details | <ul><li>min: 5 tokens</li><li>mean: 9.37 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 60.48 tokens</li><li>max: 197 tokens</li></ul> |
189
+ * Samples:
190
+ | anchor | positive |
191
+ |:------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
192
+ | <code>what is rba</code> | <code>Results-Based Accountability is a disciplined way of thinking and taking action that communities can use to improve the lives of children, youth, families, adults and the community as a whole.</code> |
193
+ | <code>what is rba</code> | <code>Results-Based Accountability® (also known as RBA) is a disciplined way of thinking and taking action that communities can use to improve the lives of children, youth, families, adults and the community as a whole. RBA is also used by organizations to improve the performance of their programs. Creating Community Impact with RBA. Community impact focuses on conditions of well-being for children, families and the community as a whole that a group of leaders is working collectively to improve. For example: “Residents with good jobs,” “Children ready for school,” or “A safe and clean neighborhood”.</code> |
194
+ | <code>was ronald reagan a democrat</code> | <code>Yes</code> |
195
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
196
+ ```json
197
+ {
198
+ "scale": 20.0,
199
+ "similarity_fct": "cos_sim"
200
+ }
201
+ ```
202
+
203
+ ### Training Hyperparameters
204
+ #### Non-Default Hyperparameters
205
+
206
+ - `per_device_train_batch_size`: 64
207
+ - `per_device_eval_batch_size`: 64
208
+ - `learning_rate`: 2e-05
209
+ - `num_train_epochs`: 1
210
+ - `warmup_ratio`: 0.1
211
+ - `fp16`: True
212
+
213
+ #### All Hyperparameters
214
+ <details><summary>Click to expand</summary>
215
+
216
+ - `overwrite_output_dir`: False
217
+ - `do_predict`: False
218
+ - `eval_strategy`: no
219
+ - `prediction_loss_only`: True
220
+ - `per_device_train_batch_size`: 64
221
+ - `per_device_eval_batch_size`: 64
222
+ - `per_gpu_train_batch_size`: None
223
+ - `per_gpu_eval_batch_size`: None
224
+ - `gradient_accumulation_steps`: 1
225
+ - `eval_accumulation_steps`: None
226
+ - `learning_rate`: 2e-05
227
+ - `weight_decay`: 0.0
228
+ - `adam_beta1`: 0.9
229
+ - `adam_beta2`: 0.999
230
+ - `adam_epsilon`: 1e-08
231
+ - `max_grad_norm`: 1.0
232
+ - `num_train_epochs`: 1
233
+ - `max_steps`: -1
234
+ - `lr_scheduler_type`: linear
235
+ - `lr_scheduler_kwargs`: {}
236
+ - `warmup_ratio`: 0.1
237
+ - `warmup_steps`: 0
238
+ - `log_level`: passive
239
+ - `log_level_replica`: warning
240
+ - `log_on_each_node`: True
241
+ - `logging_nan_inf_filter`: True
242
+ - `save_safetensors`: True
243
+ - `save_on_each_node`: False
244
+ - `save_only_model`: False
245
+ - `restore_callback_states_from_checkpoint`: False
246
+ - `no_cuda`: False
247
+ - `use_cpu`: False
248
+ - `use_mps_device`: False
249
+ - `seed`: 42
250
+ - `data_seed`: None
251
+ - `jit_mode_eval`: False
252
+ - `use_ipex`: False
253
+ - `bf16`: False
254
+ - `fp16`: True
255
+ - `fp16_opt_level`: O1
256
+ - `half_precision_backend`: auto
257
+ - `bf16_full_eval`: False
258
+ - `fp16_full_eval`: False
259
+ - `tf32`: None
260
+ - `local_rank`: 0
261
+ - `ddp_backend`: None
262
+ - `tpu_num_cores`: None
263
+ - `tpu_metrics_debug`: False
264
+ - `debug`: []
265
+ - `dataloader_drop_last`: False
266
+ - `dataloader_num_workers`: 0
267
+ - `dataloader_prefetch_factor`: None
268
+ - `past_index`: -1
269
+ - `disable_tqdm`: False
270
+ - `remove_unused_columns`: True
271
+ - `label_names`: None
272
+ - `load_best_model_at_end`: False
273
+ - `ignore_data_skip`: False
274
+ - `fsdp`: []
275
+ - `fsdp_min_num_params`: 0
276
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
277
+ - `fsdp_transformer_layer_cls_to_wrap`: None
278
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
279
+ - `deepspeed`: None
280
+ - `label_smoothing_factor`: 0.0
281
+ - `optim`: adamw_torch
282
+ - `optim_args`: None
283
+ - `adafactor`: False
284
+ - `group_by_length`: False
285
+ - `length_column_name`: length
286
+ - `ddp_find_unused_parameters`: None
287
+ - `ddp_bucket_cap_mb`: None
288
+ - `ddp_broadcast_buffers`: False
289
+ - `dataloader_pin_memory`: True
290
+ - `dataloader_persistent_workers`: False
291
+ - `skip_memory_metrics`: True
292
+ - `use_legacy_prediction_loop`: False
293
+ - `push_to_hub`: False
294
+ - `resume_from_checkpoint`: None
295
+ - `hub_model_id`: None
296
+ - `hub_strategy`: every_save
297
+ - `hub_private_repo`: False
298
+ - `hub_always_push`: False
299
+ - `gradient_checkpointing`: False
300
+ - `gradient_checkpointing_kwargs`: None
301
+ - `include_inputs_for_metrics`: False
302
+ - `eval_do_concat_batches`: True
303
+ - `fp16_backend`: auto
304
+ - `push_to_hub_model_id`: None
305
+ - `push_to_hub_organization`: None
306
+ - `mp_parameters`:
307
+ - `auto_find_batch_size`: False
308
+ - `full_determinism`: False
309
+ - `torchdynamo`: None
310
+ - `ray_scope`: last
311
+ - `ddp_timeout`: 1800
312
+ - `torch_compile`: False
313
+ - `torch_compile_backend`: None
314
+ - `torch_compile_mode`: None
315
+ - `dispatch_batches`: None
316
+ - `split_batches`: None
317
+ - `include_tokens_per_second`: False
318
+ - `include_num_input_tokens_seen`: False
319
+ - `neftune_noise_alpha`: None
320
+ - `optim_target_modules`: None
321
+ - `batch_eval_metrics`: False
322
+ - `eval_on_start`: False
323
+ - `batch_sampler`: batch_sampler
324
+ - `multi_dataset_batch_sampler`: proportional
325
+
326
+ </details>
327
+
328
+ ### Training Logs
329
+ | Epoch | Step | Training Loss |
330
+ |:------:|:----:|:-------------:|
331
+ | 0.1789 | 500 | 0.279 |
332
+ | 0.3578 | 1000 | 0.2194 |
333
+ | 0.5367 | 1500 | 0.21 |
334
+ | 0.7156 | 2000 | 0.207 |
335
+ | 0.8945 | 2500 | 0.198 |
336
+
337
+
338
+ ### Framework Versions
339
+ - Python: 3.10.12
340
+ - Sentence Transformers: 3.0.1
341
+ - Transformers: 4.42.4
342
+ - PyTorch: 2.3.1+cu121
343
+ - Accelerate: 0.32.1
344
+ - Datasets: 2.21.0
345
+ - Tokenizers: 0.19.1
346
+
347
+ ## Citation
348
+
349
+ ### BibTeX
350
+
351
+ #### Sentence Transformers
352
+ ```bibtex
353
+ @inproceedings{reimers-2019-sentence-bert,
354
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
355
+ author = "Reimers, Nils and Gurevych, Iryna",
356
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
357
+ month = "11",
358
+ year = "2019",
359
+ publisher = "Association for Computational Linguistics",
360
+ url = "https://arxiv.org/abs/1908.10084",
361
+ }
362
+ ```
363
+
364
+ #### MultipleNegativesRankingLoss
365
+ ```bibtex
366
+ @misc{henderson2017efficient,
367
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
368
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
369
+ year={2017},
370
+ eprint={1705.00652},
371
+ archivePrefix={arXiv},
372
+ primaryClass={cs.CL}
373
+ }
374
+ ```
375
+
376
+ <!--
377
+ ## Glossary
378
+
379
+ *Clearly define terms in order to be accessible across audiences.*
380
+ -->
381
+
382
+ <!--
383
+ ## Model Card Authors
384
+
385
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
386
+ -->
387
+
388
+ <!--
389
+ ## Model Card Contact
390
+
391
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
392
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.4",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1bb9f1fae8948de5852ff528058dea5ab1f9948ca01adca6bf6bc0550726492
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff