DashReza7 commited on
Commit
df0a677
1 Parent(s): cfa55ad

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,575 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
3
+ datasets:
4
+ - sentence-transformers/quora-duplicates
5
+ language:
6
+ - en
7
+ library_name: sentence-transformers
8
+ metrics:
9
+ - cosine_accuracy
10
+ - cosine_accuracy_threshold
11
+ - cosine_f1
12
+ - cosine_f1_threshold
13
+ - cosine_precision
14
+ - cosine_recall
15
+ - cosine_ap
16
+ - dot_accuracy
17
+ - dot_accuracy_threshold
18
+ - dot_f1
19
+ - dot_f1_threshold
20
+ - dot_precision
21
+ - dot_recall
22
+ - dot_ap
23
+ - manhattan_accuracy
24
+ - manhattan_accuracy_threshold
25
+ - manhattan_f1
26
+ - manhattan_f1_threshold
27
+ - manhattan_precision
28
+ - manhattan_recall
29
+ - manhattan_ap
30
+ - euclidean_accuracy
31
+ - euclidean_accuracy_threshold
32
+ - euclidean_f1
33
+ - euclidean_f1_threshold
34
+ - euclidean_precision
35
+ - euclidean_recall
36
+ - euclidean_ap
37
+ - max_accuracy
38
+ - max_accuracy_threshold
39
+ - max_f1
40
+ - max_f1_threshold
41
+ - max_precision
42
+ - max_recall
43
+ - max_ap
44
+ pipeline_tag: sentence-similarity
45
+ tags:
46
+ - sentence-transformers
47
+ - sentence-similarity
48
+ - feature-extraction
49
+ - generated_from_trainer
50
+ - dataset_size:323432
51
+ - loss:OnlineContrastiveLoss
52
+ widget:
53
+ - source_sentence: How do I have a successful career in animation industry with all
54
+ distance mode of education (from schooling)?
55
+ sentences:
56
+ - The LINE app is blocked in China. I bought a VPN, but it's still not working.
57
+ Can someone help me?
58
+ - What is independent?
59
+ - How do I find all distance education schools in any city?
60
+ - source_sentence: How can I get the funding for my startup without revealing my idea?
61
+ sentences:
62
+ - How has demonetization affected big business people like Mukesh Ambani?
63
+ - How should I go about getting funding for my idea?
64
+ - What are the advantages and disadvantages of studying an MBBS in China?
65
+ - source_sentence: I am an okay looking young women but I am always feeling ugly since
66
+ I'm not extremely beautiful. How can I stop those thoughts?
67
+ sentences:
68
+ - Whenever I think about my failures in life, I always feel that I lack some qualities.
69
+ But which are those qualities, I am not able to find out. How can I find which
70
+ qualities I lack?
71
+ - What songs make you cry?
72
+ - What does histrionic personality disorder feel like physically to you?
73
+ - source_sentence: What do you think of Prime Minister Narendra Modi's decision to
74
+ introduce new INR 500 and INR 2000 currency notes?
75
+ sentences:
76
+ - What do you think of the decision by the Indian Government to replace 1000 notes
77
+ with 2000 notes?
78
+ - How do you find volume from density and mass?
79
+ - What are the consequences of having a blood sugar level over 300?
80
+ - source_sentence: Why do complementary angles have to be adjacent?
81
+ sentences:
82
+ - What is an AEG airsoft gun?
83
+ - How can I get rid of my bad habits?
84
+ - Can two adjacent angles be complementary?
85
+ model-index:
86
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
87
+ results:
88
+ - task:
89
+ type: binary-classification
90
+ name: Binary Classification
91
+ dataset:
92
+ name: Unknown
93
+ type: unknown
94
+ metrics:
95
+ - type: cosine_accuracy
96
+ value: 0.8683618194860125
97
+ name: Cosine Accuracy
98
+ - type: cosine_accuracy_threshold
99
+ value: 0.7981455326080322
100
+ name: Cosine Accuracy Threshold
101
+ - type: cosine_f1
102
+ value: 0.8292439905343131
103
+ name: Cosine F1
104
+ - type: cosine_f1_threshold
105
+ value: 0.7598952651023865
106
+ name: Cosine F1 Threshold
107
+ - type: cosine_precision
108
+ value: 0.7746589487768696
109
+ name: Cosine Precision
110
+ - type: cosine_recall
111
+ value: 0.8921046460992195
112
+ name: Cosine Recall
113
+ - type: cosine_ap
114
+ value: 0.8822291610822541
115
+ name: Cosine Ap
116
+ - type: dot_accuracy
117
+ value: 0.8359964382003018
118
+ name: Dot Accuracy
119
+ - type: dot_accuracy_threshold
120
+ value: 17.112058639526367
121
+ name: Dot Accuracy Threshold
122
+ - type: dot_f1
123
+ value: 0.7914425390403506
124
+ name: Dot F1
125
+ - type: dot_f1_threshold
126
+ value: 16.083341598510742
127
+ name: Dot F1 Threshold
128
+ - type: dot_precision
129
+ value: 0.7294350282485875
130
+ name: Dot Precision
131
+ - type: dot_recall
132
+ value: 0.8649716946370549
133
+ name: Dot Recall
134
+ - type: dot_ap
135
+ value: 0.8438654629805356
136
+ name: Dot Ap
137
+ - type: manhattan_accuracy
138
+ value: 0.8568230725469341
139
+ name: Manhattan Accuracy
140
+ - type: manhattan_accuracy_threshold
141
+ value: 46.94310760498047
142
+ name: Manhattan Accuracy Threshold
143
+ - type: manhattan_f1
144
+ value: 0.8144082547946494
145
+ name: Manhattan F1
146
+ - type: manhattan_f1_threshold
147
+ value: 50.51482391357422
148
+ name: Manhattan F1 Threshold
149
+ - type: manhattan_precision
150
+ value: 0.7656268427880646
151
+ name: Manhattan Precision
152
+ - type: manhattan_recall
153
+ value: 0.8698288279234918
154
+ name: Manhattan Recall
155
+ - type: manhattan_ap
156
+ value: 0.8636170591577621
157
+ name: Manhattan Ap
158
+ - type: euclidean_accuracy
159
+ value: 0.8568849093472507
160
+ name: Euclidean Accuracy
161
+ - type: euclidean_accuracy_threshold
162
+ value: 3.0017127990722656
163
+ name: Euclidean Accuracy Threshold
164
+ - type: euclidean_f1
165
+ value: 0.8143016129285076
166
+ name: Euclidean F1
167
+ - type: euclidean_f1_threshold
168
+ value: 3.2429399490356445
169
+ name: Euclidean F1 Threshold
170
+ - type: euclidean_precision
171
+ value: 0.7652309686542541
172
+ name: Euclidean Precision
173
+ - type: euclidean_recall
174
+ value: 0.8700968076910194
175
+ name: Euclidean Recall
176
+ - type: euclidean_ap
177
+ value: 0.8637642883474006
178
+ name: Euclidean Ap
179
+ - type: max_accuracy
180
+ value: 0.8683618194860125
181
+ name: Max Accuracy
182
+ - type: max_accuracy_threshold
183
+ value: 46.94310760498047
184
+ name: Max Accuracy Threshold
185
+ - type: max_f1
186
+ value: 0.8292439905343131
187
+ name: Max F1
188
+ - type: max_f1_threshold
189
+ value: 50.51482391357422
190
+ name: Max F1 Threshold
191
+ - type: max_precision
192
+ value: 0.7746589487768696
193
+ name: Max Precision
194
+ - type: max_recall
195
+ value: 0.8921046460992195
196
+ name: Max Recall
197
+ - type: max_ap
198
+ value: 0.8822291610822541
199
+ name: Max Ap
200
+ ---
201
+
202
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
203
+
204
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [sentence-transformers/quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
205
+
206
+ ## Model Details
207
+
208
+ ### Model Description
209
+ - **Model Type:** Sentence Transformer
210
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb -->
211
+ - **Maximum Sequence Length:** 128 tokens
212
+ - **Output Dimensionality:** 384 tokens
213
+ - **Similarity Function:** Cosine Similarity
214
+ - **Training Dataset:**
215
+ - [sentence-transformers/quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
216
+ - **Language:** en
217
+ <!-- - **License:** Unknown -->
218
+
219
+ ### Model Sources
220
+
221
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
222
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
223
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
224
+
225
+ ### Full Model Architecture
226
+
227
+ ```
228
+ SentenceTransformer(
229
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
230
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
231
+ )
232
+ ```
233
+
234
+ ## Usage
235
+
236
+ ### Direct Usage (Sentence Transformers)
237
+
238
+ First install the Sentence Transformers library:
239
+
240
+ ```bash
241
+ pip install -U sentence-transformers
242
+ ```
243
+
244
+ Then you can load this model and run inference.
245
+ ```python
246
+ from sentence_transformers import SentenceTransformer
247
+
248
+ # Download from the 🤗 Hub
249
+ model = SentenceTransformer("DashReza7/paraphrase-multilingual-MiniLM-L12-v2_QuoraDuplicateDetection_FINETUNED")
250
+ # Run inference
251
+ sentences = [
252
+ 'Why do complementary angles have to be adjacent?',
253
+ 'Can two adjacent angles be complementary?',
254
+ 'How can I get rid of my bad habits?',
255
+ ]
256
+ embeddings = model.encode(sentences)
257
+ print(embeddings.shape)
258
+ # [3, 384]
259
+
260
+ # Get the similarity scores for the embeddings
261
+ similarities = model.similarity(embeddings, embeddings)
262
+ print(similarities.shape)
263
+ # [3, 3]
264
+ ```
265
+
266
+ <!--
267
+ ### Direct Usage (Transformers)
268
+
269
+ <details><summary>Click to see the direct usage in Transformers</summary>
270
+
271
+ </details>
272
+ -->
273
+
274
+ <!--
275
+ ### Downstream Usage (Sentence Transformers)
276
+
277
+ You can finetune this model on your own dataset.
278
+
279
+ <details><summary>Click to expand</summary>
280
+
281
+ </details>
282
+ -->
283
+
284
+ <!--
285
+ ### Out-of-Scope Use
286
+
287
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
288
+ -->
289
+
290
+ ## Evaluation
291
+
292
+ ### Metrics
293
+
294
+ #### Binary Classification
295
+
296
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
297
+
298
+ | Metric | Value |
299
+ |:-----------------------------|:-----------|
300
+ | cosine_accuracy | 0.8684 |
301
+ | cosine_accuracy_threshold | 0.7981 |
302
+ | cosine_f1 | 0.8292 |
303
+ | cosine_f1_threshold | 0.7599 |
304
+ | cosine_precision | 0.7747 |
305
+ | cosine_recall | 0.8921 |
306
+ | cosine_ap | 0.8822 |
307
+ | dot_accuracy | 0.836 |
308
+ | dot_accuracy_threshold | 17.1121 |
309
+ | dot_f1 | 0.7914 |
310
+ | dot_f1_threshold | 16.0833 |
311
+ | dot_precision | 0.7294 |
312
+ | dot_recall | 0.865 |
313
+ | dot_ap | 0.8439 |
314
+ | manhattan_accuracy | 0.8568 |
315
+ | manhattan_accuracy_threshold | 46.9431 |
316
+ | manhattan_f1 | 0.8144 |
317
+ | manhattan_f1_threshold | 50.5148 |
318
+ | manhattan_precision | 0.7656 |
319
+ | manhattan_recall | 0.8698 |
320
+ | manhattan_ap | 0.8636 |
321
+ | euclidean_accuracy | 0.8569 |
322
+ | euclidean_accuracy_threshold | 3.0017 |
323
+ | euclidean_f1 | 0.8143 |
324
+ | euclidean_f1_threshold | 3.2429 |
325
+ | euclidean_precision | 0.7652 |
326
+ | euclidean_recall | 0.8701 |
327
+ | euclidean_ap | 0.8638 |
328
+ | max_accuracy | 0.8684 |
329
+ | max_accuracy_threshold | 46.9431 |
330
+ | max_f1 | 0.8292 |
331
+ | max_f1_threshold | 50.5148 |
332
+ | max_precision | 0.7747 |
333
+ | max_recall | 0.8921 |
334
+ | **max_ap** | **0.8822** |
335
+
336
+ <!--
337
+ ## Bias, Risks and Limitations
338
+
339
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
340
+ -->
341
+
342
+ <!--
343
+ ### Recommendations
344
+
345
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
346
+ -->
347
+
348
+ ## Training Details
349
+
350
+ ### Training Dataset
351
+
352
+ #### sentence-transformers/quora-duplicates
353
+
354
+ * Dataset: [sentence-transformers/quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
355
+ * Size: 323,432 training samples
356
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
357
+ * Approximate statistics based on the first 1000 samples:
358
+ | | sentence1 | sentence2 | label |
359
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
360
+ | type | string | string | int |
361
+ | details | <ul><li>min: 6 tokens</li><li>mean: 16.39 tokens</li><li>max: 80 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 16.2 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>0: ~62.10%</li><li>1: ~37.90%</li></ul> |
362
+ * Samples:
363
+ | sentence1 | sentence2 | label |
364
+ |:---------------------------------------------------------------------------|:-----------------------------------------------------------------------|:---------------|
365
+ | <code>Which are the best compilers for C language (for Windows 10)?</code> | <code>Which is the best open source C/C++ compiler for Windows?</code> | <code>0</code> |
366
+ | <code>How much does YouTube pay per 1000 views in India?</code> | <code>How much does youtube pay per 1000 views?</code> | <code>0</code> |
367
+ | <code>What parts do I need to build my own PC?</code> | <code>I want to build a new computer. What parts do I need?</code> | <code>1</code> |
368
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
369
+
370
+ ### Evaluation Dataset
371
+
372
+ #### sentence-transformers/quora-duplicates
373
+
374
+ * Dataset: [sentence-transformers/quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
375
+ * Size: 80,858 evaluation samples
376
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
377
+ * Approximate statistics based on the first 1000 samples:
378
+ | | sentence1 | sentence2 | label |
379
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
380
+ | type | string | string | int |
381
+ | details | <ul><li>min: 6 tokens</li><li>mean: 16.48 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.76 tokens</li><li>max: 101 tokens</li></ul> | <ul><li>0: ~63.90%</li><li>1: ~36.10%</li></ul> |
382
+ * Samples:
383
+ | sentence1 | sentence2 | label |
384
+ |:-------------------------------------------------------------------------|:-----------------------------------------------------------------------------|:---------------|
385
+ | <code>How many stories got busted on Quora while being anonymous?</code> | <code>Can what I say on Quora anonymously be used against me legally?</code> | <code>0</code> |
386
+ | <code>What are innovative mechanical component designs?</code> | <code>What is the Innovation design?</code> | <code>0</code> |
387
+ | <code>What is the best way to learn phrasal verbs?</code> | <code>Why should I learn phrasal verbs?</code> | <code>1</code> |
388
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
389
+
390
+ ### Training Hyperparameters
391
+ #### Non-Default Hyperparameters
392
+
393
+ - `eval_strategy`: steps
394
+ - `per_device_train_batch_size`: 256
395
+ - `per_device_eval_batch_size`: 256
396
+ - `learning_rate`: 2e-05
397
+ - `num_train_epochs`: 1
398
+ - `warmup_ratio`: 0.1
399
+ - `fp16`: True
400
+
401
+ #### All Hyperparameters
402
+ <details><summary>Click to expand</summary>
403
+
404
+ - `overwrite_output_dir`: False
405
+ - `do_predict`: False
406
+ - `eval_strategy`: steps
407
+ - `prediction_loss_only`: True
408
+ - `per_device_train_batch_size`: 256
409
+ - `per_device_eval_batch_size`: 256
410
+ - `per_gpu_train_batch_size`: None
411
+ - `per_gpu_eval_batch_size`: None
412
+ - `gradient_accumulation_steps`: 1
413
+ - `eval_accumulation_steps`: None
414
+ - `learning_rate`: 2e-05
415
+ - `weight_decay`: 0.0
416
+ - `adam_beta1`: 0.9
417
+ - `adam_beta2`: 0.999
418
+ - `adam_epsilon`: 1e-08
419
+ - `max_grad_norm`: 1.0
420
+ - `num_train_epochs`: 1
421
+ - `max_steps`: -1
422
+ - `lr_scheduler_type`: linear
423
+ - `lr_scheduler_kwargs`: {}
424
+ - `warmup_ratio`: 0.1
425
+ - `warmup_steps`: 0
426
+ - `log_level`: passive
427
+ - `log_level_replica`: warning
428
+ - `log_on_each_node`: True
429
+ - `logging_nan_inf_filter`: True
430
+ - `save_safetensors`: True
431
+ - `save_on_each_node`: False
432
+ - `save_only_model`: False
433
+ - `restore_callback_states_from_checkpoint`: False
434
+ - `no_cuda`: False
435
+ - `use_cpu`: False
436
+ - `use_mps_device`: False
437
+ - `seed`: 42
438
+ - `data_seed`: None
439
+ - `jit_mode_eval`: False
440
+ - `use_ipex`: False
441
+ - `bf16`: False
442
+ - `fp16`: True
443
+ - `fp16_opt_level`: O1
444
+ - `half_precision_backend`: auto
445
+ - `bf16_full_eval`: False
446
+ - `fp16_full_eval`: False
447
+ - `tf32`: None
448
+ - `local_rank`: 0
449
+ - `ddp_backend`: None
450
+ - `tpu_num_cores`: None
451
+ - `tpu_metrics_debug`: False
452
+ - `debug`: []
453
+ - `dataloader_drop_last`: False
454
+ - `dataloader_num_workers`: 0
455
+ - `dataloader_prefetch_factor`: None
456
+ - `past_index`: -1
457
+ - `disable_tqdm`: False
458
+ - `remove_unused_columns`: True
459
+ - `label_names`: None
460
+ - `load_best_model_at_end`: False
461
+ - `ignore_data_skip`: False
462
+ - `fsdp`: []
463
+ - `fsdp_min_num_params`: 0
464
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
465
+ - `fsdp_transformer_layer_cls_to_wrap`: None
466
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
467
+ - `deepspeed`: None
468
+ - `label_smoothing_factor`: 0.0
469
+ - `optim`: adamw_torch
470
+ - `optim_args`: None
471
+ - `adafactor`: False
472
+ - `group_by_length`: False
473
+ - `length_column_name`: length
474
+ - `ddp_find_unused_parameters`: None
475
+ - `ddp_bucket_cap_mb`: None
476
+ - `ddp_broadcast_buffers`: False
477
+ - `dataloader_pin_memory`: True
478
+ - `dataloader_persistent_workers`: False
479
+ - `skip_memory_metrics`: True
480
+ - `use_legacy_prediction_loop`: False
481
+ - `push_to_hub`: False
482
+ - `resume_from_checkpoint`: None
483
+ - `hub_model_id`: None
484
+ - `hub_strategy`: every_save
485
+ - `hub_private_repo`: False
486
+ - `hub_always_push`: False
487
+ - `gradient_checkpointing`: False
488
+ - `gradient_checkpointing_kwargs`: None
489
+ - `include_inputs_for_metrics`: False
490
+ - `eval_do_concat_batches`: True
491
+ - `fp16_backend`: auto
492
+ - `push_to_hub_model_id`: None
493
+ - `push_to_hub_organization`: None
494
+ - `mp_parameters`:
495
+ - `auto_find_batch_size`: False
496
+ - `full_determinism`: False
497
+ - `torchdynamo`: None
498
+ - `ray_scope`: last
499
+ - `ddp_timeout`: 1800
500
+ - `torch_compile`: False
501
+ - `torch_compile_backend`: None
502
+ - `torch_compile_mode`: None
503
+ - `dispatch_batches`: None
504
+ - `split_batches`: None
505
+ - `include_tokens_per_second`: False
506
+ - `include_num_input_tokens_seen`: False
507
+ - `neftune_noise_alpha`: None
508
+ - `optim_target_modules`: None
509
+ - `batch_eval_metrics`: False
510
+ - `eval_on_start`: False
511
+ - `batch_sampler`: batch_sampler
512
+ - `multi_dataset_batch_sampler`: proportional
513
+
514
+ </details>
515
+
516
+ ### Training Logs
517
+ | Epoch | Step | Training Loss | loss | max_ap |
518
+ |:------:|:----:|:-------------:|:------:|:------:|
519
+ | 0.0791 | 100 | - | 8.0607 | 0.8164 |
520
+ | 0.1582 | 200 | - | 7.3012 | 0.8445 |
521
+ | 0.2373 | 300 | - | 6.9626 | 0.8582 |
522
+ | 0.3165 | 400 | - | 6.7901 | 0.8639 |
523
+ | 0.3956 | 500 | 7.5229 | 6.6498 | 0.8694 |
524
+ | 0.4747 | 600 | - | 6.5315 | 0.8736 |
525
+ | 0.5538 | 700 | - | 6.4686 | 0.8766 |
526
+ | 0.6329 | 800 | - | 6.4027 | 0.8787 |
527
+ | 0.7120 | 900 | - | 6.3108 | 0.8797 |
528
+ | 0.7911 | 1000 | 6.4636 | 6.2862 | 0.8812 |
529
+ | 0.8703 | 1100 | - | 6.2449 | 0.8818 |
530
+ | 0.9494 | 1200 | - | 6.2344 | 0.8822 |
531
+
532
+
533
+ ### Framework Versions
534
+ - Python: 3.10.12
535
+ - Sentence Transformers: 3.0.1
536
+ - Transformers: 4.42.4
537
+ - PyTorch: 2.3.1+cu121
538
+ - Accelerate: 0.32.1
539
+ - Datasets: 2.21.0
540
+ - Tokenizers: 0.19.1
541
+
542
+ ## Citation
543
+
544
+ ### BibTeX
545
+
546
+ #### Sentence Transformers
547
+ ```bibtex
548
+ @inproceedings{reimers-2019-sentence-bert,
549
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
550
+ author = "Reimers, Nils and Gurevych, Iryna",
551
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
552
+ month = "11",
553
+ year = "2019",
554
+ publisher = "Association for Computational Linguistics",
555
+ url = "https://arxiv.org/abs/1908.10084",
556
+ }
557
+ ```
558
+
559
+ <!--
560
+ ## Glossary
561
+
562
+ *Clearly define terms in order to be accessible across audiences.*
563
+ -->
564
+
565
+ <!--
566
+ ## Model Card Authors
567
+
568
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
569
+ -->
570
+
571
+ <!--
572
+ ## Model Card Contact
573
+
574
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
575
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.4",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f57166974b54b26554feaa6064b011aad8e79452ccce4f3357fb8020a11203e
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260