Question Answering
PEFT
Safetensors
math
gemma
LoRA
Dasool commited on
Commit
a22cc86
1 Parent(s): 51df7c0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -178
README.md CHANGED
@@ -1,202 +1,76 @@
1
  ---
2
  base_model: unsloth/gemma-2-9b-bnb-4bit
3
  library_name: peft
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
188
 
189
- ## More Information [optional]
 
190
 
191
- [More Information Needed]
 
 
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
- - PEFT 0.13.0
 
 
1
  ---
2
  base_model: unsloth/gemma-2-9b-bnb-4bit
3
  library_name: peft
4
+ license: apache-2.0
5
+ datasets:
6
+ - microsoft/orca-math-word-problems-200k
7
+ - MathQA
8
+ metrics:
9
+ - accuracy
10
+ pipeline_tag: question-answering
11
+ tags:
12
+ - math
13
+ - gemma
14
+ - 'LoRA '
15
  ---
16
 
17
  # Model Card for Model ID
18
 
19
+ This model is based on the Gemma-2-9b architecture and has been fine-tuned using two math problem datasets to improve its accuracy in solving mathematical tasks.
20
 
21
+ ## Datasets
22
 
23
+ 1. **[Orca-Math](https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k)**:
24
+ A dataset containing approximately 200K grade school math word problems, with answers generated using Azure GPT-4 Turbo.
25
+ Designed to help models solve elementary-level math problems.
26
+ 2. **[MathQA](https://math-qa.github.io/)**:
27
+ An annotated dataset of math word problems derived from the AQuA-RAT dataset using a novel representation language.
28
+ The dataset includes questions, multiple-choice options, rationales, and correct answers.
29
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  ## Training Details
31
 
32
+ The training process included:
33
+ - Optimizer: AdamW (8-bit)
34
+ - Learning Rate: 2e-4
35
+ - Epochs: 1 epoch for Orca-Math, 3 epochs for MathQA
36
+ - Batch Size: 16
37
+ - Compute Resources: The model was fine-tuned using a single GPU (A100 80GB) for 14 hours.
38
+ - Fine-tuning Method: LoRA was used for efficient training and parameter reduction.
39
+ - Framework: Fine-tuning was conducted using Unsloth, enabling faster training and better memory efficiency.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  ## Evaluation
42
+ The model was evaluated using the **MathQA test dataset** with **accuracy** as the primary metric. The following table compares its performance to other models:
43
 
44
+ | Model | Accuracy (%) |
45
+ |----------------------|---------------|
46
+ | Gemma-2-9b (base) | 24.02 |
47
+ | Mistral-7B-Instruct | 22.61 |
48
+ | Llama-3.1-8b-Instruct | 27.37 |
49
+ | Llama-3.2-3b-Instruct | 23.48 |
50
+ | Qwen2.5-7B-Instruct | 38.69 |
51
+ | **mathGemma-2-9b** | **42.479** |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
 
53
 
54
+ ## How to Get Started with the Model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
+ ```python
57
+ from transformers import AutoTokenizer, AutoModelForCausalLM
58
 
59
+ tokenizer = AutoTokenizer.from_pretrained("Dasool/math_gemma-2-9b")
60
+ model = AutoModelForCausalLM.from_pretrained("Dasool/math_gemma-2-9b")
61
 
62
+ # Example usage
63
+ inputs = tokenizer("Solve: 12 + 7", return_tensors="pt")
64
+ outputs = model.generate(inputs["input_ids"], max_length=30)
65
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
66
+ ```
67
 
68
+ ## Limitations
69
 
70
+ The evaluation is based solely on accuracy for a 5-option multiple-choice task. This provides a high-level performance metric but does not fully capture the model's reasoning ability or performance on more complex, open-ended math problems. Deeper analysis is required to explore the model's problem-solving skills.
71
 
 
72
 
73
+ ## Model Card Contact
 
74
 
75
+ If you have any questions or feedback, feel free to contact:
76
+ - Email: [email protected]