Hugging Face's logo --- language: yo datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # mT5_base_yoruba_adr ## Model description **mT5_base_yoruba_adr** is a **automatic diacritics restoration** model for Yorùbá language based on a fine-tuned mT5-base model. It achieves the **state-of-the-art performance** for adding the correct diacritics or tonal marks to Yorùbá texts. Specifically, this model is a *mT5_base* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for ADR. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("") model = AutoModelForTokenClassification.from_pretrained("") nlp = pipeline("", model=model, tokenizer=tokenizer) example = "Emir of Kano turban Zhang wey don spend 18 years for Nigeria" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (BLEU score) 64.63 BLEU on [Global Voices test set](https://arxiv.org/abs/2003.10564) 70.27 BLEU on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) ### BibTeX entry and citation info By Jesujoba Alabi and David Adelani ``` ```