File size: 1,506 Bytes
938ce8c a182762 938ce8c a182762 938ce8c 47b0fff 938ce8c 47b0fff 938ce8c a182762 938ce8c 876ef8f 938ce8c f22b957 938ce8c a182762 938ce8c 876ef8f 938ce8c a182762 876ef8f a182762 938ce8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
license: apache-2.0
base_model: google/vit-large-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: VIT_large_ieee
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# VIT_large_ieee
This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0230
- Accuracy: 0.9941
## Model description
This model was used for IEEE ManSB VICTORIS 2.0 Final Competition
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0047 | 0.67 | 100 | 0.0283 | 0.9929 |
| 0.0165 | 1.34 | 200 | 0.0230 | 0.9941 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|