Upload folder using huggingface_hub
Browse files- README.md +57 -0
- __pycache__/__init__.cpython-310.pyc +0 -0
- __pycache__/modeling_desta.cpython-310.pyc +0 -0
- modeling_desta.py +6 -6
README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
## DeSTA2
|
3 |
+
|
4 |
+
[π Paper](https://arxiv.org/pdf/2409.20007) | [π Website](https://kehanlu.github.io/DeSTA2/) | [π©βπ» Github](https://github.com/kehanlu/DeSTA2) | [π€ Model](https://huggingface.co/DeSTA-ntu/DeSTA2-8B-beta) | [π€ Dataset](https://huggingface.co/datasets/DeSTA-ntu/DeSTA2-Llama3-8B-Instruct) |
|
5 |
+
|
6 |
+
|
7 |
+
## Quickstart
|
8 |
+
|
9 |
+
```python
|
10 |
+
|
11 |
+
from huggingface import AutoModel
|
12 |
+
|
13 |
+
HF_TOKEN = "hf_..." # your huggingface token for downloading Llama3 from official Meta repo
|
14 |
+
|
15 |
+
model = AutoModel.from_pretrained("DeSTA-ntu/DeSTA2-8B-beta", trust_remote_code=True, token=HF_TOKEN)
|
16 |
+
|
17 |
+
messages = [
|
18 |
+
{"role": "system", "content": "You are a helpful voice assistant."},
|
19 |
+
{"role": "audio", "content": "<path_to_audio_file>"},
|
20 |
+
{"role": "user", "content": "Describe the audio."}
|
21 |
+
]
|
22 |
+
|
23 |
+
generated_ids = model.chat(
|
24 |
+
messages,
|
25 |
+
max_new_tokens=128,
|
26 |
+
do_sample=True,
|
27 |
+
temperature=0.6,
|
28 |
+
top_p=0.9
|
29 |
+
)
|
30 |
+
|
31 |
+
response = model.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
32 |
+
print(response)
|
33 |
+
```
|
34 |
+
|
35 |
+
|
36 |
+
## Citation
|
37 |
+
|
38 |
+
if you find our work useful, please consider citing the paper:
|
39 |
+
|
40 |
+
```
|
41 |
+
@article{lu2024developing,
|
42 |
+
title={Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data},
|
43 |
+
author={Lu, Ke-Han and Chen, Zhehuai and Fu, Szu-Wei and Yang, Chao-Han Huck and Balam, Jagadeesh and Ginsburg, Boris and Wang, Yu-Chiang Frank and Lee, Hung-yi},
|
44 |
+
journal={arXiv preprint arXiv:2409.20007},
|
45 |
+
year={2024}
|
46 |
+
}
|
47 |
+
|
48 |
+
@inproceedings{lu24c_interspeech,
|
49 |
+
title = {DeSTA: Enhancing Speech Language Models through Descriptive Speech-Text Alignment},
|
50 |
+
author = {Ke-Han Lu and Zhehuai Chen and Szu-Wei Fu and He Huang and Boris Ginsburg and Yu-Chiang Frank Wang and Hung-yi Lee},
|
51 |
+
year = {2024},
|
52 |
+
booktitle = {Interspeech 2024},
|
53 |
+
pages = {4159--4163},
|
54 |
+
doi = {10.21437/Interspeech.2024-457},
|
55 |
+
issn = {2958-1796},
|
56 |
+
}
|
57 |
+
```
|
__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (153 Bytes). View file
|
|
__pycache__/modeling_desta.cpython-310.pyc
ADDED
Binary file (7.53 kB). View file
|
|
modeling_desta.py
CHANGED
@@ -98,7 +98,7 @@ class SpeechPerception(PreTrainedModel):
|
|
98 |
def generate(self, input_features):
|
99 |
input_features = input_features.to(self.whisper.device)
|
100 |
|
101 |
-
outputs = self.whisper.generate(
|
102 |
|
103 |
transcriptions = self.processor.batch_decode(outputs.sequences, skip_special_tokens=True)[0]
|
104 |
speech_features = self.connector(outputs.encoder_hidden_states)
|
@@ -109,12 +109,12 @@ class SpeechPerception(PreTrainedModel):
|
|
109 |
class DestaModel(PreTrainedModel):
|
110 |
config_class = Desta2Config
|
111 |
|
112 |
-
def __init__(self, config):
|
113 |
super().__init__(config)
|
114 |
|
115 |
self.speech_perception = SpeechPerception(config)
|
116 |
-
self.llama = AutoModelForCausalLM.from_pretrained(config.llama_model_id, torch_dtype=torch.bfloat16)
|
117 |
-
self.tokenizer = AutoTokenizer.from_pretrained(config.llama_model_id)
|
118 |
|
119 |
|
120 |
def chat(self, messages, max_new_tokens=128, do_sample=True, temperature=0.6, top_p=0.9):
|
@@ -197,9 +197,9 @@ class DestaModel(PreTrainedModel):
|
|
197 |
return audio_path, input_features
|
198 |
|
199 |
@classmethod
|
200 |
-
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, config=None
|
201 |
config = cls.config_class.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
202 |
-
model = cls(config)
|
203 |
|
204 |
if os.path.isdir(pretrained_model_name_or_path):
|
205 |
model.speech_perception.connector.load_state_dict(
|
|
|
98 |
def generate(self, input_features):
|
99 |
input_features = input_features.to(self.whisper.device)
|
100 |
|
101 |
+
outputs = self.whisper.generate(input_features=input_features, return_dict_in_generate=True, output_hidden_states=True) # here we use default generate config for whisper
|
102 |
|
103 |
transcriptions = self.processor.batch_decode(outputs.sequences, skip_special_tokens=True)[0]
|
104 |
speech_features = self.connector(outputs.encoder_hidden_states)
|
|
|
109 |
class DestaModel(PreTrainedModel):
|
110 |
config_class = Desta2Config
|
111 |
|
112 |
+
def __init__(self, config, **kwargs):
|
113 |
super().__init__(config)
|
114 |
|
115 |
self.speech_perception = SpeechPerception(config)
|
116 |
+
self.llama = AutoModelForCausalLM.from_pretrained(config.llama_model_id, torch_dtype=torch.bfloat16, **kwargs)
|
117 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.llama_model_id, **kwargs)
|
118 |
|
119 |
|
120 |
def chat(self, messages, max_new_tokens=128, do_sample=True, temperature=0.6, top_p=0.9):
|
|
|
197 |
return audio_path, input_features
|
198 |
|
199 |
@classmethod
|
200 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, config=None,**kwargs):
|
201 |
config = cls.config_class.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
202 |
+
model = cls(config, **kwargs)
|
203 |
|
204 |
if os.path.isdir(pretrained_model_name_or_path):
|
205 |
model.speech_perception.connector.load_state_dict(
|