Upload modeling_decicoder.py with huggingface_hub
Browse files- modeling_decicoder.py +246 -0
modeling_decicoder.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright and license here
|
3 |
+
""" PyTorch DeciCoder model."""
|
4 |
+
import math
|
5 |
+
from typing import Optional, Tuple
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
from torch import nn
|
11 |
+
from transformers.models.llama.modeling_llama import LlamaMLP, LlamaRMSNorm, LlamaAttention, apply_rotary_pos_emb, \
|
12 |
+
repeat_kv, LlamaPreTrainedModel, LLAMA_START_DOCSTRING, LlamaDecoderLayer, LlamaForCausalLM, LlamaModel
|
13 |
+
from transformers.utils import add_start_docstrings
|
14 |
+
|
15 |
+
from .configuration_decicoder import DeciCoderConfig
|
16 |
+
|
17 |
+
_CONFIG_FOR_DOC = "DeciCoderConfig"
|
18 |
+
|
19 |
+
|
20 |
+
class DeciCoderAttention(LlamaAttention):
|
21 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
22 |
+
|
23 |
+
def __init__(self, config: DeciCoderConfig):
|
24 |
+
nn.Module.__init__(self)
|
25 |
+
self.config = config
|
26 |
+
self.hidden_size = config.hidden_size
|
27 |
+
self.num_heads = config.num_attention_heads
|
28 |
+
self.head_dim = self.hidden_size // self.num_heads
|
29 |
+
self.num_key_value_heads = config.num_key_value_heads
|
30 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
31 |
+
self.pretraining_tp = config.pretraining_tp
|
32 |
+
self.max_position_embeddings = config.max_position_embeddings
|
33 |
+
|
34 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
35 |
+
raise ValueError(
|
36 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
37 |
+
f" and `num_heads`: {self.num_heads})."
|
38 |
+
)
|
39 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
40 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
41 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
42 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
43 |
+
|
44 |
+
self.naive_attention_prefill = config.naive_attention_prefill
|
45 |
+
self.naive_attention_decode_batched = config.naive_attention_decode_batched
|
46 |
+
self.naive_attention_decode_single = config.naive_attention_decode_single
|
47 |
+
self._init_rope()
|
48 |
+
|
49 |
+
def forward(
|
50 |
+
self,
|
51 |
+
hidden_states: torch.Tensor,
|
52 |
+
attention_mask: Optional[torch.Tensor] = None,
|
53 |
+
position_ids: Optional[torch.LongTensor] = None,
|
54 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
55 |
+
output_attentions: bool = False,
|
56 |
+
use_cache: bool = False,
|
57 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
58 |
+
bsz, q_len, _ = hidden_states.size()
|
59 |
+
if past_key_value is None:
|
60 |
+
is_decode = False
|
61 |
+
else:
|
62 |
+
is_decode = True
|
63 |
+
if self.pretraining_tp > 1:
|
64 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
|
65 |
+
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
|
66 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
67 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
68 |
+
|
69 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
|
70 |
+
query_states = torch.cat(query_states, dim=-1)
|
71 |
+
|
72 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
|
73 |
+
key_states = torch.cat(key_states, dim=-1)
|
74 |
+
|
75 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
|
76 |
+
value_states = torch.cat(value_states, dim=-1)
|
77 |
+
|
78 |
+
else:
|
79 |
+
query_states = self.q_proj(hidden_states)
|
80 |
+
key_states = self.k_proj(hidden_states)
|
81 |
+
value_states = self.v_proj(hidden_states)
|
82 |
+
|
83 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
84 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
85 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
86 |
+
|
87 |
+
kv_seq_len = key_states.shape[-2]
|
88 |
+
if past_key_value is not None:
|
89 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
90 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
91 |
+
|
92 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
93 |
+
|
94 |
+
if past_key_value is not None:
|
95 |
+
# reuse k, v, self_attention
|
96 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
97 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
98 |
+
|
99 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
100 |
+
|
101 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
102 |
+
if is_decode:
|
103 |
+
query_states = query_states.view(bsz, self.num_key_value_heads, self.num_key_value_groups, self.head_dim)
|
104 |
+
if self.naive_attention_decode_batched and bsz > 1 or self.naive_attention_decode_single and bsz == 1:
|
105 |
+
attn_weights = (query_states @ key_states.transpose(-2, -1)) / math.sqrt(key_states.size(-1))
|
106 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
107 |
+
if attention_mask is not None:
|
108 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
109 |
+
raise ValueError(
|
110 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
111 |
+
)
|
112 |
+
attn_weights = attn_weights + attention_mask
|
113 |
+
|
114 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
115 |
+
else:
|
116 |
+
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=False,
|
117 |
+
dropout_p=0.0)
|
118 |
+
attn_output = attn_output.contiguous().view(bsz, q_len, self.hidden_size)
|
119 |
+
|
120 |
+
else:
|
121 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
122 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
123 |
+
|
124 |
+
if not self.naive_attention_prefill:
|
125 |
+
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=True,
|
126 |
+
dropout_p=0.0)
|
127 |
+
else:
|
128 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
129 |
+
# attn_weights = (query_states @ key_states.transpose(-2, -1)) / math.sqrt(key_states.size(-1))
|
130 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
131 |
+
raise ValueError(
|
132 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
133 |
+
f" {attn_weights.size()}"
|
134 |
+
)
|
135 |
+
|
136 |
+
if attention_mask is not None:
|
137 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
138 |
+
raise ValueError(
|
139 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
140 |
+
)
|
141 |
+
attn_weights = attn_weights + attention_mask
|
142 |
+
|
143 |
+
# upcast attention to fp32
|
144 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
145 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
146 |
+
|
147 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
148 |
+
raise ValueError(
|
149 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
150 |
+
f" {attn_output.size()}"
|
151 |
+
)
|
152 |
+
|
153 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, self.hidden_size)
|
154 |
+
# attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
155 |
+
|
156 |
+
if self.pretraining_tp > 1:
|
157 |
+
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
|
158 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
|
159 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
|
160 |
+
else:
|
161 |
+
attn_output = self.o_proj(attn_output)
|
162 |
+
|
163 |
+
if not output_attentions:
|
164 |
+
attn_weights = None
|
165 |
+
|
166 |
+
return attn_output, attn_weights, past_key_value
|
167 |
+
|
168 |
+
|
169 |
+
class DeciCoderDecoderLayer(LlamaDecoderLayer):
|
170 |
+
def __init__(self, config: DeciCoderConfig):
|
171 |
+
nn.Module.__init__(self)
|
172 |
+
self.hidden_size = config.hidden_size
|
173 |
+
self.self_attn = DeciCoderAttention(config=config)
|
174 |
+
self.mlp = LlamaMLP(config)
|
175 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
176 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
177 |
+
|
178 |
+
|
179 |
+
@add_start_docstrings(
|
180 |
+
"The bare DeciCoder Model outputting raw hidden-states without any specific head on top.",
|
181 |
+
LLAMA_START_DOCSTRING,
|
182 |
+
)
|
183 |
+
class DeciCoderPreTrainedModel(LlamaPreTrainedModel):
|
184 |
+
config_class = DeciCoderConfig
|
185 |
+
_no_split_modules = ["DeciCoderDecoderLayer"]
|
186 |
+
_keys_to_ignore_on_load_missing = ["self_attn.rotary_emb.inv_freq"]
|
187 |
+
|
188 |
+
|
189 |
+
@add_start_docstrings(
|
190 |
+
"The bare DeciCoder Model outputting raw hidden-states without any specific head on top.",
|
191 |
+
LLAMA_START_DOCSTRING,
|
192 |
+
)
|
193 |
+
class DeciCoderModel(LlamaModel, DeciCoderPreTrainedModel):
|
194 |
+
"""
|
195 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeciCoderDecoderLayer`]
|
196 |
+
|
197 |
+
Args:
|
198 |
+
config: DeciCoderConfig
|
199 |
+
"""
|
200 |
+
|
201 |
+
def __init__(self, config: DeciCoderConfig):
|
202 |
+
DeciCoderPreTrainedModel.__init__(self, config)
|
203 |
+
self.padding_idx = config.pad_token_id
|
204 |
+
self.vocab_size = config.vocab_size
|
205 |
+
|
206 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
207 |
+
self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
208 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
209 |
+
|
210 |
+
self.gradient_checkpointing = False
|
211 |
+
# Initialize weights and apply final processing
|
212 |
+
self.post_init()
|
213 |
+
|
214 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
215 |
+
self._validate_config_supports_attention_mask(attention_mask, input_shape, past_key_values_length)
|
216 |
+
return LlamaModel._prepare_decoder_attention_mask(
|
217 |
+
self, attention_mask, input_shape, inputs_embeds, past_key_values_length)
|
218 |
+
|
219 |
+
def _validate_config_supports_attention_mask(self, attention_mask, input_shape, past_key_values_length):
|
220 |
+
is_decode = past_key_values_length > 0
|
221 |
+
if not torch.all(torch.eq(attention_mask, 1)).item():
|
222 |
+
if is_decode:
|
223 |
+
if input_shape[0] == 1 and not self.config.naive_attention_decode_single:
|
224 |
+
raise ValueError(
|
225 |
+
"For support of custom attention masks please set naive_attention_decode_single to True in the "
|
226 |
+
"config")
|
227 |
+
elif input_shape[0] > 1 and not self.config.naive_attention_decode_batched:
|
228 |
+
raise ValueError(
|
229 |
+
"For support of custom attention masks please set naive_attention_decode_batched to True in the"
|
230 |
+
"config")
|
231 |
+
else:
|
232 |
+
if not self.config.naive_attention_prefill:
|
233 |
+
raise ValueError("For support of custom attention masks please set naive_attention_prefill to "
|
234 |
+
"True in the config")
|
235 |
+
|
236 |
+
|
237 |
+
class DeciCoderForCausalLM(LlamaForCausalLM, DeciCoderPreTrainedModel):
|
238 |
+
def __init__(self, config):
|
239 |
+
DeciCoderPreTrainedModel.__init__(self, config)
|
240 |
+
self.model = DeciCoderModel(config)
|
241 |
+
self.pretraining_tp = config.pretraining_tp
|
242 |
+
self.vocab_size = config.vocab_size
|
243 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
244 |
+
|
245 |
+
# Initialize weights and apply final processing
|
246 |
+
self.post_init()
|