---
base_model: sentence-transformers/multi-qa-mpnet-base-dot-v1
datasets:
- PiC/phrase_similarity
language:
- en
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:7004
- loss:SoftmaxLoss
widget:
- source_sentence: Google SEO expert Matt Cutts had a similar experience, of the eight
magazines and newspapers Cutts tried to order, he received zero.
sentences:
- He dissolved the services of her guards and her court attendants and seized an
expansive reach of properties belonging to her.
- Google SEO expert Matt Cutts had a comparable occurrence, of the eight magazines
and newspapers Cutts tried to order, he received zero.
- bill's newest solo play, "all over the map", premiered off broadway in april 2016,
produced by all for an individual cinema.
- source_sentence: Shula said that Namath "beat our blitz" with his fast release,
which let him quickly dump the football off to a receiver.
sentences:
- Shula said that Namath "beat our blitz" with his quick throw, which let him quickly
dump the football off to a receiver.
- it elects a single component of parliament (mp) by the first past the post system
of election.
- Matt Groening said that West was one of the most widely known group to ever come
to the studio.
- source_sentence: When Angel calls out her name, Cordelia suddenly appears from the
opposite side of the room saying, "Yep, that chick's in rough shape.
sentences:
- The ruined row of text, part of the Florida East Coast Railway, was repaired by
2014 renewing freight train access to the port.
- When Angel calls out her name, Cordelia suddenly appears from the opposite side
of the room saying, "Yep, that chick's in approximate form.
- Chaplin's films introduced a moderated kind of comedy than the typical Keystone
farce, and he developed a large fan base.
- source_sentence: The following table shows the distances traversed by National Route
11 in each different department, showing cities and towns that it passes by (or
near).
sentences:
- The following table shows the distances traversed by National Route 11 in each
separate city authority, showing cities and towns that it passes by (or near).
- Similarly, indigenous communities and leaders practice as the main rule of law
on local native lands and reserves.
- later, sylvan mixed gary numan's albums "replicas" (with numan's previous band
tubeway army) and "the quest for instant gratification".
- source_sentence: She wants to write about Keima but suffers a major case of writer's
block.
sentences:
- In some countries, new extremist parties on the extreme opposite of left of the
political spectrum arose, motivated through issues of immigration, multiculturalism
and integration.
- specific medical status of movement and the general condition of movement both
are conditions under which contradictions can move.
- She wants to write about Keima but suffers a huge occurrence of writer's block.
model-index:
- name: SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: quora duplicates dev
type: quora-duplicates-dev
metrics:
- type: cosine_accuracy
value: 0.681
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8657017946243286
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7373493975903616
name: Cosine F1
- type: cosine_f1_threshold
value: 0.5984358787536621
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.6161073825503356
name: Cosine Precision
- type: cosine_recall
value: 0.918
name: Cosine Recall
- type: cosine_ap
value: 0.7182646093780225
name: Cosine Ap
- type: dot_accuracy
value: 0.678
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 35.86492156982422
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.7361668003207699
name: Dot F1
- type: dot_f1_threshold
value: 26.907243728637695
name: Dot F1 Threshold
- type: dot_precision
value: 0.6144578313253012
name: Dot Precision
- type: dot_recall
value: 0.918
name: Dot Recall
- type: dot_ap
value: 0.6677244029971525
name: Dot Ap
- type: manhattan_accuracy
value: 0.682
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 75.9630126953125
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.7362459546925567
name: Manhattan F1
- type: manhattan_f1_threshold
value: 128.1773681640625
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.6182065217391305
name: Manhattan Precision
- type: manhattan_recall
value: 0.91
name: Manhattan Recall
- type: manhattan_ap
value: 0.719303642596625
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.682
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 3.447394847869873
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.7361668003207699
name: Euclidean F1
- type: euclidean_f1_threshold
value: 6.024651527404785
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.6144578313253012
name: Euclidean Precision
- type: euclidean_recall
value: 0.918
name: Euclidean Recall
- type: euclidean_ap
value: 0.7195081644602263
name: Euclidean Ap
- type: max_accuracy
value: 0.682
name: Max Accuracy
- type: max_accuracy_threshold
value: 75.9630126953125
name: Max Accuracy Threshold
- type: max_f1
value: 0.7373493975903616
name: Max F1
- type: max_f1_threshold
value: 128.1773681640625
name: Max F1 Threshold
- type: max_precision
value: 0.6182065217391305
name: Max Precision
- type: max_recall
value: 0.918
name: Max Recall
- type: max_ap
value: 0.7195081644602263
name: Max Ap
---
# SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-mpnet-base-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1) on the [PiC/phrase_similarity](https://huggingface.co/datasets/PiC/phrase_similarity) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/multi-qa-mpnet-base-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Dot Product
- **Training Dataset:**
- [PiC/phrase_similarity](https://huggingface.co/datasets/PiC/phrase_similarity)
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Deehan1866/finetuned-sentence-transformers-multi-qa-mpnet-base-dot-v1")
# Run inference
sentences = [
"She wants to write about Keima but suffers a major case of writer's block.",
"She wants to write about Keima but suffers a huge occurrence of writer's block.",
'specific medical status of movement and the general condition of movement both are conditions under which contradictions can move.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `quora-duplicates-dev`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.681 |
| cosine_accuracy_threshold | 0.8657 |
| cosine_f1 | 0.7373 |
| cosine_f1_threshold | 0.5984 |
| cosine_precision | 0.6161 |
| cosine_recall | 0.918 |
| cosine_ap | 0.7183 |
| dot_accuracy | 0.678 |
| dot_accuracy_threshold | 35.8649 |
| dot_f1 | 0.7362 |
| dot_f1_threshold | 26.9072 |
| dot_precision | 0.6145 |
| dot_recall | 0.918 |
| dot_ap | 0.6677 |
| manhattan_accuracy | 0.682 |
| manhattan_accuracy_threshold | 75.963 |
| manhattan_f1 | 0.7362 |
| manhattan_f1_threshold | 128.1774 |
| manhattan_precision | 0.6182 |
| manhattan_recall | 0.91 |
| manhattan_ap | 0.7193 |
| euclidean_accuracy | 0.682 |
| euclidean_accuracy_threshold | 3.4474 |
| euclidean_f1 | 0.7362 |
| euclidean_f1_threshold | 6.0247 |
| euclidean_precision | 0.6145 |
| euclidean_recall | 0.918 |
| euclidean_ap | 0.7195 |
| max_accuracy | 0.682 |
| max_accuracy_threshold | 75.963 |
| max_f1 | 0.7373 |
| max_f1_threshold | 128.1774 |
| max_precision | 0.6182 |
| max_recall | 0.918 |
| **max_ap** | **0.7195** |
## Training Details
### Training Dataset
#### PiC/phrase_similarity
* Dataset: [PiC/phrase_similarity](https://huggingface.co/datasets/PiC/phrase_similarity) at [fc67ce7](https://huggingface.co/datasets/PiC/phrase_similarity/tree/fc67ce7c1e69e360e42dc6f31ddf97bb32f1923d)
* Size: 7,004 training samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details |
newly formed camp is released from the membrane and diffuses across the intracellular space where it serves to activate pka.
| recently made encampment is released from the membrane and diffuses across the intracellular space where it serves to activate pka.
| 0
|
| According to one data, in 1910, on others – in 1915, the mansion became Natalya Dmitriyevna Shchuchkina's property.
| According to a particular statistic, in 1910, on others – in 1915, the mansion became Natalya Dmitriyevna Shchuchkina's property.
| 1
|
| Note that Fact 1 does not assume any particular structure on the set formula_65.
| Note that Fact 1 does not assume any specific edifice on the set formula_65.
| 0
|
* Loss: [SoftmaxLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
### Evaluation Dataset
#### PiC/phrase_similarity
* Dataset: [PiC/phrase_similarity](https://huggingface.co/datasets/PiC/phrase_similarity) at [fc67ce7](https://huggingface.co/datasets/PiC/phrase_similarity/tree/fc67ce7c1e69e360e42dc6f31ddf97bb32f1923d)
* Size: 1,000 evaluation samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | after theo's apparent death, she decides to leave first colony and ends up traveling with the apostles.
| after theo's apparent death, she decides to leave original settlement and ends up traveling with the apostles.
| 0
|
| The guard assigned to Vivian leaves her to prevent the robbery, allowing her to connect to the bank's network.
| The guard assigned to Vivian leaves her to prevent the robbery, allowing her to connect to the bank's locations.
| 0
|
| Two days later Louis XVI banished Necker by a "lettre de cachet" for his very public exchange of pamphlets.
| Two days later Louis XVI banished Necker by a "lettre de cachet" for his very free forum of pamphlets.
| 0
|
* Loss: [SoftmaxLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
#### All Hyperparameters