DeepMount00
commited on
Commit
•
0199509
1
Parent(s):
bf1295d
Update README.md
Browse files
README.md
CHANGED
@@ -99,6 +99,23 @@ The model is capable of identifying the following categories:
|
|
99 |
- **DOSAGGIO**: Quantità di un medicinale da assumere.
|
100 |
- **FORM**: Forma del medicinale, ad esempio compresse.
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
## Conclusion
|
103 |
The primary goal of this model is to provide effective and accurate identification of a wide range of entities, surpassing the limits of traditional models. Being the only model in Italy to recognize so many entities, we are confident that it will be an invaluable tool for numerous application areas. Constant evolution and improvement of the model is our top priority to ensure always top-notch performance.
|
104 |
|
|
|
99 |
- **DOSAGGIO**: Quantità di un medicinale da assumere.
|
100 |
- **FORM**: Forma del medicinale, ad esempio compresse.
|
101 |
|
102 |
+
## How to Use
|
103 |
+
To utilize this model:
|
104 |
+
|
105 |
+
```python
|
106 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
107 |
+
from transformers import pipeline
|
108 |
+
import torch
|
109 |
+
|
110 |
+
tokenizer = AutoTokenizer.from_pretrained("DeepMount00/Italian_NER_XXL")
|
111 |
+
model = AutoModelForTokenClassification.from_pretrained("DeepMount00/Italian_NER_XXL", ignore_mismatched_sizes=True)
|
112 |
+
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
|
113 |
+
example = """Il commendatore Gianluigi Alberico De Laurentis-Ponti, con residenza legale in Corso Imperatrice 67, Torino, avente codice fiscale DLNGGL60B01L219P, è amministratore delegato della "De Laurentis Advanced Engineering Group S.p.A.", che si trova in Piazza Affari 32, Milano (MI); con una partita IVA di 09876543210, la società è stata recentemente incaricata di sviluppare una nuova linea di componenti aerospaziali per il progetto internazionale di esplorazione di Marte."""
|
114 |
+
ner_results = nlp(example)
|
115 |
+
print(ner_results)
|
116 |
+
```
|
117 |
+
---
|
118 |
+
|
119 |
## Conclusion
|
120 |
The primary goal of this model is to provide effective and accurate identification of a wide range of entities, surpassing the limits of traditional models. Being the only model in Italy to recognize so many entities, we are confident that it will be an invaluable tool for numerous application areas. Constant evolution and improvement of the model is our top priority to ensure always top-notch performance.
|
121 |
|