--- license: mit language: - it --- # Mistral-Ita-7B GGUF ## Provided files | Name | Quant method | Bits | Size | Use case | |------|--------------|------|---------|--------------------------------------------------| | [mistal-Ita-7b-q3_k_m.gguf](https://huggingface.co/DeepMount00/Mistral-Ita-7b-GGUF/blob/main/mistal-Ita-7b-q3_k_m.gguf) | Q3_K_M | 3 | 3.52 GB | very small, high quality loss | | [mistal-Ita-7b-q4_k_m.gguf](https://huggingface.co/DeepMount00/Mistral-Ita-7b-GGUF/blob/main/mistal-Ita-7b-q4_k_m.gguf) | Q4_K_M | 4 | 4.37 GB | medium, balanced quality - recommended | | [mistal-Ita-7b-q5_k_m.gguf](https://huggingface.co/DeepMount00/Mistral-Ita-7b-GGUF/blob/main/mistal-Ita-7b-q5_k_m.gguf) | Q5_K_M | 5 | 5.13 GB | large, very low quality loss - recommended | ## How to Use How to utilize my Mistral for Italian text generation ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("DeepMount00/Mistral-Ita-7b-GGUF", model_file="mistal-Ita-7b-q3_k_m.gguf", model_type="mistral", gpu_layers=0) domanda = """Scrivi una funzione python che calcola la media tra questi valori""" contesto = """ [-5, 10, 15, 20, 25, 30, 35] """ system_prompt = '' prompt = domanda + "\n" + contesto B_INST, E_INST = "[INST]", "[/INST]" prompt = f"{system_prompt}{B_INST}{prompt}\n{E_INST}" print(llm(prompt)) ```