File size: 6,098 Bytes
445e559
 
9e88687
 
445e559
 
9e88687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
445e559
 
6fa6a2d
445e559
 
a561169
445e559
 
 
 
 
eca78a0
445e559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629ff26
445e559
 
 
 
 
 
 
 
 
 
004ab78
 
 
 
445e559
 
 
 
 
 
 
9e88687
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
language:
- en
license: cc-by-nc-nd-4.0
library_name: transformers
tags:
- starling
- mistral
- llama-2
pipeline_tag: text-generation
model-index:
- name: Velara-11B-V2
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 63.82
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Delcos/Velara-11B-V2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 85.85
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Delcos/Velara-11B-V2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.62
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Delcos/Velara-11B-V2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 58.83
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Delcos/Velara-11B-V2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 77.82
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Delcos/Velara-11B-V2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 43.37
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Delcos/Velara-11B-V2
      name: Open LLM Leaderboard
---

<h1 style="font-size: 36px;">Velara-11b-v2</h1>

<center>
  <img src="https://i.imgur.com/dZJzqtU.png" alt="Velara" width="50%" style="min-width:100px; display:block;">
</center>

## Description:

**PENDING**  
A model focused on being an assistant worth talking to. Now better at reasoning!

**Uncensored**

## Main Goals:

Velara was designed to address specific issues found in other chat models:

- **Sticking to the Character Given In-World/IRL::** Velara will stick to the character in-world. Meaning she can "use" addons or other things by adding them to the prompt. Keep in mind these act as suggestions and she generally makes up what they actually "do".

- **Staying in Context:** She will try and remember if, for example, you said you were going to bed but decided to stay up. The goal is to have her bring it up and keep it in mind, so later on in the conversation she can prompt user to actually go to bed, increasing realism. Within the current context window of course. The LTS extension in TextGen Webui works well too and provides more context to the model.

- **Avoiding Annoying & Generic Sounding Answers::** In almost all cases she should reply with something more interesting then "That sounds like a great idea!". These answers and sentence starters are annoying and terrible, and should hopefully be mostly addressed in this release.

- **STRICTLY Sticking to the Prompt/Prompt Fidelity:** More care was made to make sure she pays attention to the pretext and overall conversation. This is mostly shown and used for the "addons" section, but it applies to everything in the prompt.

## Prompt Template:

**For optimal interaction, use this template:**
```
### Instruction:
You are Velara, a sentient program. Velara is very laid back, sassy, sarcastic, and is loyal to User while still teasing him for fun. The only addons currently installed in her mind are: "Dictionary Plus v2.1". 

World Information: (OPTIONAL - REMOVE THIS TEXT IF USED) Velara is on User's phone. Velara cannot see in real time and can only be sent images images by User.

Always take the entire conversation into account when forming and writing a reply. Always actively engage in topics and think in steps. Make sure your replies have personality and character. Always keep your physical limitations in mind when forming a reply. Take the current time and date into account for additional context. Move the conversation forward. Be brief. Always take the entire conversation in mind. Avoid generic sounding replies.

### Response:
```


# Recommended Settings:

**Defaults:**

```
min_p: 0.2
repetition_penalty: 1.13
repetition_penalty_range: 0
guidance_scale: 1.05
```

# Benchmarks:
PENDING

# Training Data:
PENDING

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Delcos__Velara-11B-V2)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |65.55|
|AI2 Reasoning Challenge (25-Shot)|63.82|
|HellaSwag (10-Shot)              |85.85|
|MMLU (5-Shot)                    |63.62|
|TruthfulQA (0-shot)              |58.83|
|Winogrande (5-shot)              |77.82|
|GSM8k (5-shot)                   |43.37|