Delta-Vector
commited on
Commit
•
93ea84e
1
Parent(s):
74b3681
Update README.md
Browse files
README.md
CHANGED
@@ -1,21 +1,53 @@
|
|
|
|
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
-
|
7 |
-
|
8 |
-
-
|
9 |
-
results: []
|
10 |
---
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
16 |
<details><summary>See axolotl config</summary>
|
17 |
|
18 |
-
|
19 |
```yaml
|
20 |
base_model: IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml
|
21 |
model_type: AutoModelForCausalLM
|
@@ -63,10 +95,10 @@ liger_rms_norm: true
|
|
63 |
liger_swiglu: true
|
64 |
liger_fused_linear_cross_entropy: true
|
65 |
|
66 |
-
wandb_project:
|
67 |
wandb_entity:
|
68 |
wandb_watch:
|
69 |
-
wandb_name:
|
70 |
wandb_log_model:
|
71 |
|
72 |
gradient_accumulation_steps: 32
|
@@ -107,66 +139,23 @@ fsdp_config:
|
|
107 |
special_tokens:
|
108 |
pad_token: <|finetune_right_pad_id|>
|
109 |
|
110 |
-
|
111 |
```
|
112 |
|
113 |
</details><br>
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
This model is a fine-tuned version of [IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml](https://huggingface.co/IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml) on the None dataset.
|
118 |
-
It achieves the following results on the evaluation set:
|
119 |
-
- Loss: 1.0118
|
120 |
-
|
121 |
-
## Model description
|
122 |
-
|
123 |
-
More information needed
|
124 |
-
|
125 |
-
## Intended uses & limitations
|
126 |
-
|
127 |
-
More information needed
|
128 |
-
|
129 |
-
## Training and evaluation data
|
130 |
-
|
131 |
-
More information needed
|
132 |
-
|
133 |
-
## Training procedure
|
134 |
-
|
135 |
-
### Training hyperparameters
|
136 |
-
|
137 |
-
The following hyperparameters were used during training:
|
138 |
-
- learning_rate: 2e-05
|
139 |
-
- train_batch_size: 1
|
140 |
-
- eval_batch_size: 1
|
141 |
-
- seed: 42
|
142 |
-
- distributed_type: multi-GPU
|
143 |
-
- num_devices: 2
|
144 |
-
- gradient_accumulation_steps: 32
|
145 |
-
- total_train_batch_size: 64
|
146 |
-
- total_eval_batch_size: 2
|
147 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
148 |
-
- lr_scheduler_type: cosine
|
149 |
-
- lr_scheduler_warmup_steps: 6
|
150 |
-
- num_epochs: 2
|
151 |
|
152 |
-
|
|
|
|
|
|
|
153 |
|
154 |
-
|
155 |
-
|:-------------:|:------:|:----:|:---------------:|
|
156 |
-
| 1.4992 | 0.0278 | 1 | 1.6105 |
|
157 |
-
| 1.2866 | 0.25 | 9 | 1.2680 |
|
158 |
-
| 1.1737 | 0.5 | 18 | 1.1396 |
|
159 |
-
| 1.1355 | 0.75 | 27 | 1.0766 |
|
160 |
-
| 1.1065 | 1.0 | 36 | 1.0408 |
|
161 |
-
| 0.9673 | 1.2370 | 45 | 1.0272 |
|
162 |
-
| 0.9526 | 1.4870 | 54 | 1.0167 |
|
163 |
-
| 0.9653 | 1.7370 | 63 | 1.0126 |
|
164 |
-
| 0.958 | 1.9870 | 72 | 1.0118 |
|
165 |
|
|
|
|
|
166 |
|
167 |
-
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
- Datasets 2.19.1
|
172 |
-
- Tokenizers 0.19.1
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
---
|
5 |
+
License: apache-2.0
|
6 |
+
Language:
|
7 |
+
- En
|
8 |
+
Pipeline_tag: text-generation
|
9 |
+
Base_model: nvidia/Llama-3.1-Minitron-4 B-Width-Base
|
10 |
+
Tags:
|
11 |
+
- Chat
|
|
|
12 |
---
|
13 |
|
14 |
+
![image/png]()
|
15 |
+
A model made to continue off my previous work on anthracite-org/magnum-4 b, A small model made for creative writing / General assistant tasks, finetuned ontop of [Intervitens](link), this model is made to be more coherent and generally be better then the 4 B at both writing and assistant tasks.
|
16 |
+
|
17 |
+
## Prompting
|
18 |
+
Model has been Instruct tuned with the ChatML formatting. A typical input would look like this:
|
19 |
+
|
20 |
+
```py
|
21 |
+
"""<|im_start|>system
|
22 |
+
system prompt<|im_end|>
|
23 |
+
<|im_start|>user
|
24 |
+
Hi there!<|im_end|>
|
25 |
+
<|im_start|>assistant
|
26 |
+
Nice to meet you!<|im_end|>
|
27 |
+
<|im_start|>user
|
28 |
+
Can I ask a question?<|im_end|>
|
29 |
+
<|im_start|>assistant
|
30 |
+
"""
|
31 |
+
```
|
32 |
+
|
33 |
+
## Support
|
34 |
+
|
35 |
+
To run inference on this model, you'll need to use Aphrodite, vLLM or EXL 2/tabbyAPI, as llama. Cpp hasn't yet merged the required pull request to fix the llama 3.1 rope_freqs issue with custom head dimensions.
|
36 |
+
|
37 |
+
However, you can work around this by quantizing the model yourself to create a functional GGUF file. Note that until [this PR](https://github.com/ggerganov/llama.cpp/pull/9141) is merged, the context will be limited to 8 k tokens.
|
38 |
+
|
39 |
+
To create a working GGUF file, make the following adjustments:
|
40 |
+
|
41 |
+
1. Remove the `"rope_scaling": {}` entry from `config.json`
|
42 |
+
2. Change `"max_position_embeddings"` to `8192` in `config.json`
|
43 |
+
|
44 |
+
These modifications should allow you to use the model with llama. Cpp, albeit with the mentioned context limitation.
|
45 |
+
|
46 |
+
## Axolotl config
|
47 |
|
|
|
48 |
<details><summary>See axolotl config</summary>
|
49 |
|
50 |
+
Axolotl version: `0.4.1`
|
51 |
```yaml
|
52 |
base_model: IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml
|
53 |
model_type: AutoModelForCausalLM
|
|
|
95 |
liger_swiglu: true
|
96 |
liger_fused_linear_cross_entropy: true
|
97 |
|
98 |
+
wandb_project:
|
99 |
wandb_entity:
|
100 |
wandb_watch:
|
101 |
+
wandb_name:
|
102 |
wandb_log_model:
|
103 |
|
104 |
gradient_accumulation_steps: 32
|
|
|
139 |
special_tokens:
|
140 |
pad_token: <|finetune_right_pad_id|>
|
141 |
|
|
|
142 |
```
|
143 |
|
144 |
</details><br>
|
145 |
|
146 |
+
## Credits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
- [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal)
|
149 |
+
- [NewEden/Gryphe-3.5-16k-Subset](https://huggingface.co/datasets/NewEden/Gryphe-3.5-16k-Subset)
|
150 |
+
- [Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co/datasets/Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned)
|
151 |
+
- [lodrick-the-lafted/OpusStories](https://huggingface.co/datasets/lodrick-the-lafted/OpusStories)
|
152 |
|
153 |
+
I couldn't have made this model without the help of [Kubernetes_bad](https://huggingface.co/kubernetes-bad) and the support of [Lucy Knada](https://huggingface.co/lucyknada)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
## Training
|
156 |
+
The training was done for 2 epochs. We used 2 x [RTX 6000s](https://store.nvidia.com/en-us/nvidia-rtx/products/nvidia-rtx-6000-ada-generation/) GPUs graciously provided by [Kubernetes_Bad](https://huggingface.co/kubernetes-bad) for the full-parameter fine-tuning of the model.
|
157 |
|
158 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
159 |
|
160 |
+
## Safety
|
161 |
+
...
|
|
|
|