|
import os
|
|
import json
|
|
|
|
folder_path = "d:\\Dropbox\\YandexDisk\\Dataset\\Human_Captions_done\\cleaned\\"
|
|
base_folder = "d:\\Dropbox\\YandexDisk\\Dataset\\"
|
|
tags_folder_path = "d:\\Dropbox\\YandexDisk\\Dataset\\Human_Captions_basetxt\\"
|
|
json_data = []
|
|
id_counter = 0
|
|
|
|
for filename in os.listdir(folder_path):
|
|
if filename.endswith(".jpg"):
|
|
image_name = os.path.splitext(filename)[0]
|
|
image_path = os.path.join(folder_path, filename)
|
|
txt_path = os.path.join(folder_path, f"{image_name}.txt")
|
|
|
|
if os.path.exists(txt_path):
|
|
with open(txt_path, "r") as f:
|
|
txt_content = f.read()
|
|
|
|
tags_path = os.path.join(tags_folder_path, f"{image_name}.txt")
|
|
if os.path.exists(tags_path):
|
|
with open(tags_path, "r") as f:
|
|
tags_content = f.read().strip()
|
|
prompt = f"<ImageHere> Make a caption that describe this image. Here is the tags for this image: {tags_content}"
|
|
else:
|
|
prompt = "<ImageHere> Make a caption that describe this image"
|
|
|
|
json_object = {
|
|
"id": str(id_counter),
|
|
"image": [image_path],
|
|
"conversations": [
|
|
{"from": "user", "value": prompt},
|
|
{"from": "assistant", "value": txt_content}
|
|
]
|
|
}
|
|
|
|
json_data.append(json_object)
|
|
id_counter += 1
|
|
|
|
with open(os.path.join(base_folder, "output.json"), "w") as f:
|
|
json.dump(json_data, f, indent=4) |