--- language: - en license: apache-2.0 base_model: openai/whisper-tiny.en tags: - generated_from_trainer datasets: - Dev372/Medical_STT_Dataset_1_0_check_training metrics: - wer model-index: - name: English Whisper Model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Medical type: Dev372/Medical_STT_Dataset_1_0_check_training args: 'split: test' metrics: - name: Wer type: wer value: 6.0845332094751505 --- # English Whisper Model This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the Medical dataset. It achieves the following results on the evaluation set: - Loss: 0.1019 - Wer: 6.0845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 18 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 1.8606 | 1.0101 | 100 | 1.6059 | 9.1965 | | 1.0954 | 2.0202 | 200 | 1.0513 | 6.2935 | | 0.6627 | 3.0303 | 300 | 0.6161 | 6.6187 | | 0.1747 | 4.0404 | 400 | 0.1527 | 4.2034 | | 0.0554 | 5.0505 | 500 | 0.0924 | 5.3182 | | 0.028 | 6.0606 | 600 | 0.0819 | 4.0641 | | 0.0132 | 7.0707 | 700 | 0.0835 | 5.6897 | | 0.0085 | 8.0808 | 800 | 0.0913 | 5.5504 | | 0.0056 | 9.0909 | 900 | 0.0932 | 5.8059 | | 0.0043 | 10.1010 | 1000 | 0.0982 | 5.8059 | | 0.0023 | 11.1111 | 1100 | 0.0990 | 5.8755 | | 0.0016 | 12.1212 | 1200 | 0.1005 | 6.0149 | | 0.0015 | 13.1313 | 1300 | 0.1015 | 6.0613 | | 0.0016 | 14.1414 | 1400 | 0.1017 | 6.0613 | | 0.0015 | 15.1515 | 1500 | 0.1019 | 6.0845 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1