--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer metrics: - accuracy model-index: - name: dog_emotion_v3_resnet results: [] --- # dog_emotion_v3_resnet This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3063 - Accuracy: 0.5075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 50 | 1.3721 | 0.3475 | | No log | 2.0 | 100 | 1.3502 | 0.45 | | No log | 3.0 | 150 | 1.3292 | 0.485 | | No log | 4.0 | 200 | 1.3103 | 0.5025 | | No log | 5.0 | 250 | 1.3063 | 0.5075 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3