File size: 2,675 Bytes
40370e3
edfd598
40370e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af4e86d
40370e3
af4e86d
 
40370e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d02b06f
74b237f
40370e3
 
 
af4e86d
 
40370e3
 
 
 
74b237f
 
af4e86d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40370e3
 
 
 
66985d8
 
 
40370e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-ft-btb-ccv-cy
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xlsr-53-ft-btb-ccv-cy

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6832
- Wer: 0.4641

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Wer    |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 4.8422        | 0.0854 | 500   | 2.2692          | 0.9886 |
| 1.2704        | 0.1709 | 1000  | 1.1623          | 0.7745 |
| 1.0177        | 0.2563 | 1500  | 0.9608          | 0.6586 |
| 0.9289        | 0.3417 | 2000  | 0.8117          | 0.6027 |
| 0.855         | 0.4271 | 2500  | 0.7981          | 0.5627 |
| 0.804         | 0.5126 | 3000  | 0.7293          | 0.5387 |
| 0.7384        | 0.5980 | 3500  | 0.6784          | 0.5150 |
| 0.7277        | 0.6834 | 4000  | 0.6553          | 0.4961 |
| 0.7009        | 0.7688 | 4500  | 0.6262          | 0.4684 |
| 0.6774        | 0.8543 | 5000  | 0.5955          | 0.4525 |
| 0.6427        | 0.9397 | 5500  | 0.5997          | 0.4741 |
| 0.6224        | 1.0251 | 6000  | 0.5653          | 0.4310 |
| 0.5507        | 1.1105 | 6500  | 0.5521          | 0.4173 |
| 0.6425        | 1.1960 | 7000  | 0.9010          | 0.5927 |
| 0.7218        | 1.2814 | 7500  | 0.7136          | 0.5011 |
| 0.8592        | 1.3668 | 8000  | 0.8863          | 0.6393 |
| 0.8668        | 1.4522 | 8500  | 0.7689          | 0.5330 |
| 0.7688        | 1.5377 | 9000  | 0.7101          | 0.4776 |
| 0.688         | 1.6231 | 9500  | 0.6742          | 0.4661 |
| 0.7079        | 1.7085 | 10000 | 0.6832          | 0.4641 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1