DewiBrynJones
commited on
Commit
•
39b2f20
1
Parent(s):
e25a7c2
Model save
Browse files
README.md
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/wav2vec2-large-xlsr-53
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: wav2vec2-xlsr-53-ft-btb-ccv-enc-cy
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# wav2vec2-xlsr-53-ft-btb-ccv-enc-cy
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4095
|
21 |
+
- Wer: 0.3271
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0003
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 500
|
47 |
+
- training_steps: 10000
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
53 |
+
|:-------------:|:------:|:-----:|:---------------:|:------:|
|
54 |
+
| No log | 0.0194 | 100 | 3.5475 | 1.0 |
|
55 |
+
| No log | 0.0387 | 200 | 3.0259 | 1.0 |
|
56 |
+
| No log | 0.0581 | 300 | 3.0887 | 1.0 |
|
57 |
+
| No log | 0.0774 | 400 | 2.3822 | 0.9972 |
|
58 |
+
| 4.0938 | 0.0968 | 500 | 1.4547 | 0.9020 |
|
59 |
+
| 4.0938 | 0.1161 | 600 | 1.2603 | 0.8510 |
|
60 |
+
| 4.0938 | 0.1355 | 700 | 1.0940 | 0.7655 |
|
61 |
+
| 4.0938 | 0.1549 | 800 | 1.0705 | 0.7602 |
|
62 |
+
| 4.0938 | 0.1742 | 900 | 0.9356 | 0.6973 |
|
63 |
+
| 1.0597 | 0.1936 | 1000 | 0.9104 | 0.6766 |
|
64 |
+
| 1.0597 | 0.2129 | 1100 | 0.8879 | 0.6570 |
|
65 |
+
| 1.0597 | 0.2323 | 1200 | 0.8595 | 0.6612 |
|
66 |
+
| 1.0597 | 0.2516 | 1300 | 0.8352 | 0.6075 |
|
67 |
+
| 1.0597 | 0.2710 | 1400 | 0.7912 | 0.6033 |
|
68 |
+
| 0.8484 | 0.2904 | 1500 | 0.7862 | 0.6067 |
|
69 |
+
| 0.8484 | 0.3097 | 1600 | 0.7790 | 0.6009 |
|
70 |
+
| 0.8484 | 0.3291 | 1700 | 0.7678 | 0.5629 |
|
71 |
+
| 0.8484 | 0.3484 | 1800 | 0.7515 | 0.5799 |
|
72 |
+
| 0.8484 | 0.3678 | 1900 | 0.7424 | 0.5859 |
|
73 |
+
| 0.764 | 0.3871 | 2000 | 0.7130 | 0.5521 |
|
74 |
+
| 0.764 | 0.4065 | 2100 | 0.7114 | 0.5408 |
|
75 |
+
| 0.764 | 0.4259 | 2200 | 0.7229 | 0.5577 |
|
76 |
+
| 0.764 | 0.4452 | 2300 | 0.6773 | 0.5160 |
|
77 |
+
| 0.764 | 0.4646 | 2400 | 0.6784 | 0.5178 |
|
78 |
+
| 0.6868 | 0.4839 | 2500 | 0.6720 | 0.5262 |
|
79 |
+
| 0.6868 | 0.5033 | 2600 | 0.6804 | 0.5337 |
|
80 |
+
| 0.6868 | 0.5226 | 2700 | 0.6599 | 0.5024 |
|
81 |
+
| 0.6868 | 0.5420 | 2800 | 0.6287 | 0.4902 |
|
82 |
+
| 0.6868 | 0.5614 | 2900 | 0.6304 | 0.4947 |
|
83 |
+
| 0.6761 | 0.5807 | 3000 | 0.6258 | 0.4851 |
|
84 |
+
| 0.6761 | 0.6001 | 3100 | 0.6311 | 0.4990 |
|
85 |
+
| 0.6761 | 0.6194 | 3200 | 0.6172 | 0.4901 |
|
86 |
+
| 0.6761 | 0.6388 | 3300 | 0.6187 | 0.4666 |
|
87 |
+
| 0.6761 | 0.6581 | 3400 | 0.6045 | 0.4725 |
|
88 |
+
| 0.6462 | 0.6775 | 3500 | 0.5950 | 0.4717 |
|
89 |
+
| 0.6462 | 0.6969 | 3600 | 0.5903 | 0.4602 |
|
90 |
+
| 0.6462 | 0.7162 | 3700 | 0.5865 | 0.4727 |
|
91 |
+
| 0.6462 | 0.7356 | 3800 | 0.5820 | 0.4590 |
|
92 |
+
| 0.6462 | 0.7549 | 3900 | 0.6026 | 0.4830 |
|
93 |
+
| 0.6193 | 0.7743 | 4000 | 0.5807 | 0.4496 |
|
94 |
+
| 0.6193 | 0.7937 | 4100 | 0.5621 | 0.4486 |
|
95 |
+
| 0.6193 | 0.8130 | 4200 | 0.5730 | 0.4593 |
|
96 |
+
| 0.6193 | 0.8324 | 4300 | 0.5592 | 0.4374 |
|
97 |
+
| 0.6193 | 0.8517 | 4400 | 0.5621 | 0.4239 |
|
98 |
+
| 0.59 | 0.8711 | 4500 | 0.5458 | 0.4304 |
|
99 |
+
| 0.59 | 0.8904 | 4600 | 0.5406 | 0.4271 |
|
100 |
+
| 0.59 | 0.9098 | 4700 | 0.5269 | 0.4132 |
|
101 |
+
| 0.59 | 0.9292 | 4800 | 0.5362 | 0.4215 |
|
102 |
+
| 0.59 | 0.9485 | 4900 | 0.5226 | 0.4163 |
|
103 |
+
| 0.5636 | 0.9679 | 5000 | 0.5297 | 0.4148 |
|
104 |
+
| 0.5636 | 0.9872 | 5100 | 0.5226 | 0.4136 |
|
105 |
+
| 0.5636 | 1.0066 | 5200 | 0.5239 | 0.4054 |
|
106 |
+
| 0.5636 | 1.0259 | 5300 | 0.5383 | 0.4058 |
|
107 |
+
| 0.5636 | 1.0453 | 5400 | 0.5125 | 0.4067 |
|
108 |
+
| 0.4924 | 1.0647 | 5500 | 0.5029 | 0.3953 |
|
109 |
+
| 0.4924 | 1.0840 | 5600 | 0.5054 | 0.3932 |
|
110 |
+
| 0.4924 | 1.1034 | 5700 | 0.4969 | 0.3894 |
|
111 |
+
| 0.4924 | 1.1227 | 5800 | 0.4935 | 0.3851 |
|
112 |
+
| 0.4924 | 1.1421 | 5900 | 0.4977 | 0.3817 |
|
113 |
+
| 0.4602 | 1.1614 | 6000 | 0.4863 | 0.3874 |
|
114 |
+
| 0.4602 | 1.1808 | 6100 | 0.4906 | 0.3777 |
|
115 |
+
| 0.4602 | 1.2002 | 6200 | 0.4891 | 0.3764 |
|
116 |
+
| 0.4602 | 1.2195 | 6300 | 0.4881 | 0.3801 |
|
117 |
+
| 0.4602 | 1.2389 | 6400 | 0.4814 | 0.3727 |
|
118 |
+
| 0.4407 | 1.2582 | 6500 | 0.4714 | 0.3772 |
|
119 |
+
| 0.4407 | 1.2776 | 6600 | 0.4739 | 0.3706 |
|
120 |
+
| 0.4407 | 1.2969 | 6700 | 0.4692 | 0.3714 |
|
121 |
+
| 0.4407 | 1.3163 | 6800 | 0.4673 | 0.3728 |
|
122 |
+
| 0.4407 | 1.3357 | 6900 | 0.4610 | 0.3678 |
|
123 |
+
| 0.4284 | 1.3550 | 7000 | 0.4730 | 0.3653 |
|
124 |
+
| 0.4284 | 1.3744 | 7100 | 0.4606 | 0.3640 |
|
125 |
+
| 0.4284 | 1.3937 | 7200 | 0.4572 | 0.3620 |
|
126 |
+
| 0.4284 | 1.4131 | 7300 | 0.4575 | 0.3630 |
|
127 |
+
| 0.4284 | 1.4324 | 7400 | 0.4578 | 0.3590 |
|
128 |
+
| 0.4299 | 1.4518 | 7500 | 0.4477 | 0.3569 |
|
129 |
+
| 0.4299 | 1.4712 | 7600 | 0.4442 | 0.3552 |
|
130 |
+
| 0.4299 | 1.4905 | 7700 | 0.4420 | 0.3546 |
|
131 |
+
| 0.4299 | 1.5099 | 7800 | 0.4437 | 0.3483 |
|
132 |
+
| 0.4299 | 1.5292 | 7900 | 0.4373 | 0.3486 |
|
133 |
+
| 0.408 | 1.5486 | 8000 | 0.4336 | 0.3464 |
|
134 |
+
| 0.408 | 1.5679 | 8100 | 0.4348 | 0.3448 |
|
135 |
+
| 0.408 | 1.5873 | 8200 | 0.4276 | 0.3418 |
|
136 |
+
| 0.408 | 1.6067 | 8300 | 0.4294 | 0.3399 |
|
137 |
+
| 0.408 | 1.6260 | 8400 | 0.4272 | 0.3388 |
|
138 |
+
| 0.3964 | 1.6454 | 8500 | 0.4311 | 0.3409 |
|
139 |
+
| 0.3964 | 1.6647 | 8600 | 0.4260 | 0.3381 |
|
140 |
+
| 0.3964 | 1.6841 | 8700 | 0.4260 | 0.3371 |
|
141 |
+
| 0.3964 | 1.7034 | 8800 | 0.4260 | 0.3364 |
|
142 |
+
| 0.3964 | 1.7228 | 8900 | 0.4215 | 0.3351 |
|
143 |
+
| 0.3866 | 1.7422 | 9000 | 0.4234 | 0.3330 |
|
144 |
+
| 0.3866 | 1.7615 | 9100 | 0.4210 | 0.3319 |
|
145 |
+
| 0.3866 | 1.7809 | 9200 | 0.4156 | 0.3301 |
|
146 |
+
| 0.3866 | 1.8002 | 9300 | 0.4158 | 0.3303 |
|
147 |
+
| 0.3866 | 1.8196 | 9400 | 0.4155 | 0.3294 |
|
148 |
+
| 0.37 | 1.8389 | 9500 | 0.4137 | 0.3292 |
|
149 |
+
| 0.37 | 1.8583 | 9600 | 0.4120 | 0.3284 |
|
150 |
+
| 0.37 | 1.8777 | 9700 | 0.4109 | 0.3301 |
|
151 |
+
| 0.37 | 1.8970 | 9800 | 0.4100 | 0.3279 |
|
152 |
+
| 0.37 | 1.9164 | 9900 | 0.4095 | 0.3267 |
|
153 |
+
| 0.371 | 1.9357 | 10000 | 0.4095 | 0.3271 |
|
154 |
+
|
155 |
+
|
156 |
+
### Framework versions
|
157 |
+
|
158 |
+
- Transformers 4.41.2
|
159 |
+
- Pytorch 2.3.1+cu121
|
160 |
+
- Datasets 2.20.0
|
161 |
+
- Tokenizers 0.19.1
|