File size: 2,480 Bytes
d6d841c
 
 
 
9fc001b
 
d6d841c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afd9ae6
 
d6d841c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afd9ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6d841c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- ./data-configs/btb-cv-other.json
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-ft-btb-cv-other-cy
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xlsr-53-ft-btb-cv-other-cy

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 0.3727

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- training_steps: 8000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 4.9036        | 0.0643 | 500  | inf             | 0.9912 |
| 1.3889        | 0.1286 | 1000 | inf             | 0.7934 |
| 1.0207        | 0.1929 | 1500 | inf             | 0.6829 |
| 0.8901        | 0.2572 | 2000 | inf             | 0.6450 |
| 0.8467        | 0.3215 | 2500 | inf             | 0.5458 |
| 0.7813        | 0.3859 | 3000 | inf             | 0.5367 |
| 0.7456        | 0.4502 | 3500 | inf             | 0.5156 |
| 0.7312        | 0.5145 | 4000 | inf             | 0.4801 |
| 0.6929        | 0.5788 | 4500 | inf             | 0.4659 |
| 0.6567        | 0.6431 | 5000 | inf             | 0.4405 |
| 0.6413        | 0.7074 | 5500 | inf             | 0.4199 |
| 0.6187        | 0.7717 | 6000 | inf             | 0.4102 |
| 0.6086        | 0.8360 | 6500 | inf             | 0.4037 |
| 0.585         | 0.9003 | 7000 | inf             | 0.3872 |
| 0.5509        | 0.9646 | 7500 | inf             | 0.3832 |
| 0.5263        | 1.0289 | 8000 | inf             | 0.3727 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1