--- license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xlsr-53-ft-btb-cy results: [] --- # wav2vec2-xlsr-53-ft-btb-cy This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4105 - Wer: 0.3136 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | No log | 0.1414 | 100 | 3.2195 | 1.0 | | No log | 0.2829 | 200 | 3.1180 | 1.0 | | No log | 0.4243 | 300 | 1.7236 | 0.9364 | | No log | 0.5658 | 400 | 1.1579 | 0.7628 | | 3.0279 | 0.7072 | 500 | 0.9558 | 0.6721 | | 3.0279 | 0.8487 | 600 | 0.8189 | 0.6424 | | 3.0279 | 0.9901 | 700 | 0.6973 | 0.5164 | | 3.0279 | 1.1315 | 800 | 0.6183 | 0.4752 | | 3.0279 | 1.2730 | 900 | 0.5936 | 0.4703 | | 0.7925 | 1.4144 | 1000 | 0.5498 | 0.4304 | | 0.7925 | 1.5559 | 1100 | 0.5286 | 0.4148 | | 0.7925 | 1.6973 | 1200 | 0.5130 | 0.3974 | | 0.7925 | 1.8388 | 1300 | 0.4878 | 0.3864 | | 0.7925 | 1.9802 | 1400 | 0.4740 | 0.3733 | | 0.62 | 2.1216 | 1500 | 0.4578 | 0.3593 | | 0.62 | 2.2631 | 1600 | 0.4535 | 0.3500 | | 0.62 | 2.4045 | 1700 | 0.4485 | 0.3497 | | 0.62 | 2.5460 | 1800 | 0.4373 | 0.3431 | | 0.62 | 2.6874 | 1900 | 0.4362 | 0.3429 | | 0.4879 | 2.8289 | 2000 | 0.4236 | 0.3327 | | 0.4879 | 2.9703 | 2100 | 0.4172 | 0.3257 | | 0.4879 | 3.1117 | 2200 | 0.4206 | 0.3217 | | 0.4879 | 3.2532 | 2300 | 0.4166 | 0.3199 | | 0.4879 | 3.3946 | 2400 | 0.4134 | 0.3173 | | 0.4036 | 3.5361 | 2500 | 0.4110 | 0.3159 | | 0.4036 | 3.6775 | 2600 | 0.4105 | 0.3136 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1