Dex-X commited on
Commit
0f930fc
1 Parent(s): 24ec35a

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,422 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L12-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:2144
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: How do I find out when I should write my examinations?
16
+ sentences:
17
+ - Information relating to examination timetables is available from the Examination
18
+ Office and will be published on the official Institute Notice Board and the website.
19
+ - If you find an error on your academic record, you should contact the Registration
20
+ and Student Records Management Office immediately.
21
+ - To request accommodations for a disability, you must submit documentation of the
22
+ disability to the disability services office and meet with a disability services
23
+ coordinator.
24
+ - source_sentence: What is the language of instruction at the Harare Institute of
25
+ Technology?
26
+ sentences:
27
+ - English is the language of instruction.
28
+ - Tracking international events and conference and strategically link them to HIT,
29
+ internationalizing HIT programmes and activities, developing bouquet of events
30
+ and activities for international visitors, helping affiliate, accredit HIT, staff
31
+ and students to international bodies and associations, liaising with national
32
+ bodies and promote Zimbabwean culture and symbols, serving as a point of contact
33
+ for exchange students, staff and visitors, ensuring international programmes align
34
+ to national programmes and symbols, helping affiliate HIT ethos to national art
35
+ and culture, monitoring implementation of MoUs and MoAs, facilitation of international
36
+ travel and visits, providing Institute departments with consular advice, ensuring
37
+ HIT members get oriented to particular countries’ culture and services before
38
+ departure, driving recruitment of foreign students and exchange programmes.
39
+ - BFA 7206 is the course code for Financial Institutions Fraud, which is an elective
40
+ course in the second semester of the program.
41
+ - source_sentence: What is the process for collecting a certificate?
42
+ sentences:
43
+ - The programme is designed such that on completion, graduates should be able to
44
+ innovatively execute their professional role within prescribed and legislative
45
+ parameters, demonstrate a critical understanding and application of quality assurance
46
+ and radiation protection in Radiography, apply scientific knowledge and technical
47
+ skills to perform Radiography procedures, plan, develop and apply total quality
48
+ management appropriate to the Radiography context, apply management, entrepreneurial,
49
+ education and research skills independently and function in a supervisory clinical
50
+ governance and quality assurance capacity within the professional sector, demonstrate
51
+ the ability to reflect in clinical practice, critically evaluate and adjust to
52
+ current and new trends in Radiography, demonstrate capability to implement new
53
+ knowledge and solve problems in varying contexts, and engage life-long learning
54
+ and development in their profession.
55
+ - The process involves clearing any dues to the Institute and providing valid identification
56
+ documents.
57
+ - A student can apply for change of programme within two weeks after commencement
58
+ of lectures.
59
+ - source_sentence: How do I change my address or contact information?
60
+ sentences:
61
+ - Information Security & Assurance is a field that deals with the protection of
62
+ information and information systems from unauthorized access, use, disclosure,
63
+ disruption, modification, or destruction.
64
+ - The Information and Communications Technology Services (ICTS) Department at HIT
65
+ is responsible for providing and maintaining the Institute's IT infrastructure
66
+ and services.
67
+ - You can update your address or contact information through the online student
68
+ portal or by contacting the Academic Registry.
69
+ - source_sentence: What is the difference between Cloud Computing and Information
70
+ Security & Assurance?
71
+ sentences:
72
+ - The fourth semester focuses on courses such as Research Project, Clinical Practice
73
+ IV, and Seminar.
74
+ - Cloud Computing is focused on the design, implementation, and management of cloud
75
+ services, while Information Security & Assurance is focused on the protection
76
+ of information by mitigating information risks and ensuring availability, privacy,
77
+ and integrity of data.
78
+ - The Applied Research Methods course is designed to equip students with the skills
79
+ and knowledge necessary to conduct research in chemical engineering process and
80
+ plant design.
81
+ ---
82
+
83
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
84
+
85
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
86
+
87
+ ## Model Details
88
+
89
+ ### Model Description
90
+ - **Model Type:** Sentence Transformer
91
+ - **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision a05860a77cef7b37e0048a7864658139bc18a854 -->
92
+ - **Maximum Sequence Length:** 128 tokens
93
+ - **Output Dimensionality:** 384 tokens
94
+ - **Similarity Function:** Cosine Similarity
95
+ <!-- - **Training Dataset:** Unknown -->
96
+ <!-- - **Language:** Unknown -->
97
+ <!-- - **License:** Unknown -->
98
+
99
+ ### Model Sources
100
+
101
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
102
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
103
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
104
+
105
+ ### Full Model Architecture
106
+
107
+ ```
108
+ SentenceTransformer(
109
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
110
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
111
+ (2): Normalize()
112
+ )
113
+ ```
114
+
115
+ ## Usage
116
+
117
+ ### Direct Usage (Sentence Transformers)
118
+
119
+ First install the Sentence Transformers library:
120
+
121
+ ```bash
122
+ pip install -U sentence-transformers
123
+ ```
124
+
125
+ Then you can load this model and run inference.
126
+ ```python
127
+ from sentence_transformers import SentenceTransformer
128
+
129
+ # Download from the 🤗 Hub
130
+ model = SentenceTransformer("Dex-X/finehit")
131
+ # Run inference
132
+ sentences = [
133
+ 'What is the difference between Cloud Computing and Information Security & Assurance?',
134
+ 'Cloud Computing is focused on the design, implementation, and management of cloud services, while Information Security & Assurance is focused on the protection of information by mitigating information risks and ensuring availability, privacy, and integrity of data.',
135
+ 'The Applied Research Methods course is designed to equip students with the skills and knowledge necessary to conduct research in chemical engineering process and plant design.',
136
+ ]
137
+ embeddings = model.encode(sentences)
138
+ print(embeddings.shape)
139
+ # [3, 384]
140
+
141
+ # Get the similarity scores for the embeddings
142
+ similarities = model.similarity(embeddings, embeddings)
143
+ print(similarities.shape)
144
+ # [3, 3]
145
+ ```
146
+
147
+ <!--
148
+ ### Direct Usage (Transformers)
149
+
150
+ <details><summary>Click to see the direct usage in Transformers</summary>
151
+
152
+ </details>
153
+ -->
154
+
155
+ <!--
156
+ ### Downstream Usage (Sentence Transformers)
157
+
158
+ You can finetune this model on your own dataset.
159
+
160
+ <details><summary>Click to expand</summary>
161
+
162
+ </details>
163
+ -->
164
+
165
+ <!--
166
+ ### Out-of-Scope Use
167
+
168
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
169
+ -->
170
+
171
+ <!--
172
+ ## Bias, Risks and Limitations
173
+
174
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
175
+ -->
176
+
177
+ <!--
178
+ ### Recommendations
179
+
180
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
181
+ -->
182
+
183
+ ## Training Details
184
+
185
+ ### Training Dataset
186
+
187
+ #### Unnamed Dataset
188
+
189
+
190
+ * Size: 2,144 training samples
191
+ * Columns: <code>question</code> and <code>answer</code>
192
+ * Approximate statistics based on the first 1000 samples:
193
+ | | question | answer |
194
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
195
+ | type | string | string |
196
+ | details | <ul><li>min: 6 tokens</li><li>mean: 13.94 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 30.7 tokens</li><li>max: 128 tokens</li></ul> |
197
+ * Samples:
198
+ | question | answer |
199
+ |:----------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
200
+ | <code>What is the role of the Dean of Students?</code> | <code>The Dean of Students oversees various aspects of student life, including student affairs, campus life and development, accommodation, wellness, and more.</code> |
201
+ | <code>What does the Student Affairs department do?</code> | <code>The Student Affairs department handles matters related to student life, conduct, and welfare.</code> |
202
+ | <code>What is the role of Campus Life and Student Development?</code> | <code>Campus Life and Student Development is responsible for fostering a positive campus environment and promoting student growth and development.</code> |
203
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
204
+ ```json
205
+ {
206
+ "scale": 20.0,
207
+ "similarity_fct": "cos_sim"
208
+ }
209
+ ```
210
+
211
+ ### Evaluation Dataset
212
+
213
+ #### Unnamed Dataset
214
+
215
+
216
+ * Size: 214 evaluation samples
217
+ * Columns: <code>question</code> and <code>answer</code>
218
+ * Approximate statistics based on the first 1000 samples:
219
+ | | question | answer |
220
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
221
+ | type | string | string |
222
+ | details | <ul><li>min: 7 tokens</li><li>mean: 15.12 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 31.14 tokens</li><li>max: 128 tokens</li></ul> |
223
+ * Samples:
224
+ | question | answer |
225
+ |:--------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|
226
+ | <code>What is Student Accommodation and Catering?</code> | <code>Student Accommodation and Catering is a department that manages student housing and dining services.</code> |
227
+ | <code>What certification does Mr. Njonga have from the National Social Security Authority?</code> | <code>Safety and Health Advisor Certification</code> |
228
+ | <code>What is the duration of the B Tech (Hons) Computer Science programme?</code> | <code>The B Tech (Hons) Computer Science programme is a four-year full-time regular programme.</code> |
229
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
230
+ ```json
231
+ {
232
+ "scale": 20.0,
233
+ "similarity_fct": "cos_sim"
234
+ }
235
+ ```
236
+
237
+ ### Training Hyperparameters
238
+ #### Non-Default Hyperparameters
239
+
240
+ - `eval_strategy`: steps
241
+ - `per_device_train_batch_size`: 16
242
+ - `per_device_eval_batch_size`: 16
243
+ - `num_train_epochs`: 1
244
+ - `warmup_ratio`: 0.1
245
+ - `fp16`: True
246
+ - `batch_sampler`: no_duplicates
247
+
248
+ #### All Hyperparameters
249
+ <details><summary>Click to expand</summary>
250
+
251
+ - `overwrite_output_dir`: False
252
+ - `do_predict`: False
253
+ - `eval_strategy`: steps
254
+ - `prediction_loss_only`: True
255
+ - `per_device_train_batch_size`: 16
256
+ - `per_device_eval_batch_size`: 16
257
+ - `per_gpu_train_batch_size`: None
258
+ - `per_gpu_eval_batch_size`: None
259
+ - `gradient_accumulation_steps`: 1
260
+ - `eval_accumulation_steps`: None
261
+ - `learning_rate`: 5e-05
262
+ - `weight_decay`: 0.0
263
+ - `adam_beta1`: 0.9
264
+ - `adam_beta2`: 0.999
265
+ - `adam_epsilon`: 1e-08
266
+ - `max_grad_norm`: 1.0
267
+ - `num_train_epochs`: 1
268
+ - `max_steps`: -1
269
+ - `lr_scheduler_type`: linear
270
+ - `lr_scheduler_kwargs`: {}
271
+ - `warmup_ratio`: 0.1
272
+ - `warmup_steps`: 0
273
+ - `log_level`: passive
274
+ - `log_level_replica`: warning
275
+ - `log_on_each_node`: True
276
+ - `logging_nan_inf_filter`: True
277
+ - `save_safetensors`: True
278
+ - `save_on_each_node`: False
279
+ - `save_only_model`: False
280
+ - `restore_callback_states_from_checkpoint`: False
281
+ - `no_cuda`: False
282
+ - `use_cpu`: False
283
+ - `use_mps_device`: False
284
+ - `seed`: 42
285
+ - `data_seed`: None
286
+ - `jit_mode_eval`: False
287
+ - `use_ipex`: False
288
+ - `bf16`: False
289
+ - `fp16`: True
290
+ - `fp16_opt_level`: O1
291
+ - `half_precision_backend`: auto
292
+ - `bf16_full_eval`: False
293
+ - `fp16_full_eval`: False
294
+ - `tf32`: None
295
+ - `local_rank`: 0
296
+ - `ddp_backend`: None
297
+ - `tpu_num_cores`: None
298
+ - `tpu_metrics_debug`: False
299
+ - `debug`: []
300
+ - `dataloader_drop_last`: False
301
+ - `dataloader_num_workers`: 0
302
+ - `dataloader_prefetch_factor`: None
303
+ - `past_index`: -1
304
+ - `disable_tqdm`: False
305
+ - `remove_unused_columns`: True
306
+ - `label_names`: None
307
+ - `load_best_model_at_end`: False
308
+ - `ignore_data_skip`: False
309
+ - `fsdp`: []
310
+ - `fsdp_min_num_params`: 0
311
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
312
+ - `fsdp_transformer_layer_cls_to_wrap`: None
313
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
314
+ - `deepspeed`: None
315
+ - `label_smoothing_factor`: 0.0
316
+ - `optim`: adamw_torch
317
+ - `optim_args`: None
318
+ - `adafactor`: False
319
+ - `group_by_length`: False
320
+ - `length_column_name`: length
321
+ - `ddp_find_unused_parameters`: None
322
+ - `ddp_bucket_cap_mb`: None
323
+ - `ddp_broadcast_buffers`: False
324
+ - `dataloader_pin_memory`: True
325
+ - `dataloader_persistent_workers`: False
326
+ - `skip_memory_metrics`: True
327
+ - `use_legacy_prediction_loop`: False
328
+ - `push_to_hub`: False
329
+ - `resume_from_checkpoint`: None
330
+ - `hub_model_id`: None
331
+ - `hub_strategy`: every_save
332
+ - `hub_private_repo`: False
333
+ - `hub_always_push`: False
334
+ - `gradient_checkpointing`: False
335
+ - `gradient_checkpointing_kwargs`: None
336
+ - `include_inputs_for_metrics`: False
337
+ - `eval_do_concat_batches`: True
338
+ - `fp16_backend`: auto
339
+ - `push_to_hub_model_id`: None
340
+ - `push_to_hub_organization`: None
341
+ - `mp_parameters`:
342
+ - `auto_find_batch_size`: False
343
+ - `full_determinism`: False
344
+ - `torchdynamo`: None
345
+ - `ray_scope`: last
346
+ - `ddp_timeout`: 1800
347
+ - `torch_compile`: False
348
+ - `torch_compile_backend`: None
349
+ - `torch_compile_mode`: None
350
+ - `dispatch_batches`: None
351
+ - `split_batches`: None
352
+ - `include_tokens_per_second`: False
353
+ - `include_num_input_tokens_seen`: False
354
+ - `neftune_noise_alpha`: None
355
+ - `optim_target_modules`: None
356
+ - `batch_eval_metrics`: False
357
+ - `batch_sampler`: no_duplicates
358
+ - `multi_dataset_batch_sampler`: proportional
359
+
360
+ </details>
361
+
362
+ ### Training Logs
363
+ | Epoch | Step | Training Loss | loss |
364
+ |:------:|:----:|:-------------:|:------:|
365
+ | 0.7463 | 100 | 0.5551 | 0.0665 |
366
+
367
+
368
+ ### Framework Versions
369
+ - Python: 3.10.12
370
+ - Sentence Transformers: 3.0.1
371
+ - Transformers: 4.41.2
372
+ - PyTorch: 2.3.0+cu121
373
+ - Accelerate: 0.32.1
374
+ - Datasets: 2.20.0
375
+ - Tokenizers: 0.19.1
376
+
377
+ ## Citation
378
+
379
+ ### BibTeX
380
+
381
+ #### Sentence Transformers
382
+ ```bibtex
383
+ @inproceedings{reimers-2019-sentence-bert,
384
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
385
+ author = "Reimers, Nils and Gurevych, Iryna",
386
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
387
+ month = "11",
388
+ year = "2019",
389
+ publisher = "Association for Computational Linguistics",
390
+ url = "https://arxiv.org/abs/1908.10084",
391
+ }
392
+ ```
393
+
394
+ #### MultipleNegativesRankingLoss
395
+ ```bibtex
396
+ @misc{henderson2017efficient,
397
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
398
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
399
+ year={2017},
400
+ eprint={1705.00652},
401
+ archivePrefix={arXiv},
402
+ primaryClass={cs.CL}
403
+ }
404
+ ```
405
+
406
+ <!--
407
+ ## Glossary
408
+
409
+ *Clearly define terms in order to be accessible across audiences.*
410
+ -->
411
+
412
+ <!--
413
+ ## Model Card Authors
414
+
415
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
416
+ -->
417
+
418
+ <!--
419
+ ## Model Card Contact
420
+
421
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
422
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f04d2893981a0fd27b5243b39191077f85a468446e90d27f78fe50b297ba0d2b
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 128,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff