Dhanraj1503's picture
Upload PPO LunarLander-v2 trained agent
b8871c2 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eba50b4b1c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eba50b4b250>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eba50b4b2e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eba50b4b370>", "_build": "<function ActorCriticPolicy._build at 0x7eba50b4b400>", "forward": "<function ActorCriticPolicy.forward at 0x7eba50b4b490>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eba50b4b520>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eba50b4b5b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7eba50b4b640>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eba50b4b6d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eba50b4b760>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eba50b4b7f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eba5a628e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705324700087668662, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFqM4b1c03G6CN5qu0ocFDiClN+6T14QOgAAgD8AAAAAI9GhPr+KOT/NGgw9du2nvib5WT49bdq8AAAAAAAAAACauQm71JxDPnUDIr0SPle+qeQ9PHLKfL0AAAAAAAAAAAAPTL0iVpo/Nm9Ovt7huL41knS9EzbbvQAAAAAAAAAA5tzcvcPZTLphHay7Yvx7OCugzjpyC3c4AACAPwAAAABarai9Hz2Zud0B1Lfv9PeymvpYujBQ9TYAAIA/AACAP22PUz457wY/cIqCvaVBl76r4gI+XQsBuQAAAAAAAAAA5l4wvRFHZz7w/ga9ksGXvmGAEr0u25a9AAAAAAAAAACzOBG9Upr+PGL80b2wRDa+AjDmvP7wQb0AAAAAAAAAABbCkj7I+2w/IvGNPuAHwL7njbU+jWoLvgAAAAAAAAAAzWytPLxojj66k5S9YdNqvvCywzwiTKY6AAAAAAAAAAAgHw0+S0+/PsLBUb56mUy+ZWoJvRYJ+jsAAAAAAAAAAACH8rwpTBy6wOyVuh5sD7WzozK7qmytOQAAgD8AAIA/M9+/u3cRkT84ghS9ldHIvgQN7LvElK87AAAAAAAAAAAzzJk9/ujMPe08w71w4Gq+WXwdPMqF2LwAAAAAAAAAAABc5L0UEJe6dmC6u0xkEDgx9Ve64Zg2twAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8ECKrJbMaMAWyUTYQBjAF0lEdAkjbx6OYIB3V9lChoBkdAcAr0VJtix2gHTTcBaAhHQJI3QzBRAKR1fZQoaAZHQHHntfLLZBdoB01GAWgIR0CSOjgkka/AdX2UKGgGR0BvlowfyPMjaAdNNAFoCEdAkjsZg1FYuHV9lChoBkdAcQjc+qzZ6GgHTRoBaAhHQJI8EGpuMuR1fZQoaAZHQG2xDOcDr7hoB01iAmgIR0CSPClqagEmdX2UKGgGRz/ZzPa+N96UaAdL9mgIR0CSPDmLLpzLdX2UKGgGR0BwobdsSCe3aAdNMQFoCEdAkj3ULc9GJHV9lChoBkdAb9oneBQN1GgHTSsBaAhHQJI+7BnBciZ1fZQoaAZHQG9MyYPXkHVoB01IAWgIR0CSReKh+OOsdX2UKGgGR0Br5sCLdepoaAdNKgFoCEdAkkZM/dIoVnV9lChoBkdAYRV6DXe3yGgHTegDaAhHQJJGYYR/ViF1fZQoaAZHQHA2ciW3Sa5oB01bAWgIR0CSR09+PRzBdX2UKGgGR0BwCo2tMfzSaAdNRQFoCEdAkkd78vVVgnV9lChoBkdAcD4As052hmgHTcYDaAhHQJJH+9nK4hF1fZQoaAZHQEAg2UjcEeRoB0vsaAhHQJJJa19fCyh1fZQoaAZHQHMs81wYLstoB00hAWgIR0CSSn752yLRdX2UKGgGR0BT0COq//NraAdL/2gIR0CSTGbY9Pk8dX2UKGgGR0By9wJmdy1eaAdNkQFoCEdAkmIPb48EFHV9lChoBkdAcFwGsFMZg2gHTaYBaAhHQJJjUJtzjm11fZQoaAZHQG+zV8CxNZhoB03uAmgIR0CSZHIkJKJ3dX2UKGgGR0BsuMSoOx0NaAdNnwFoCEdAkmSZKraM73V9lChoBkdAb7h752yLRGgHTRkBaAhHQJJk6vr4WUN1fZQoaAZHQHLfbmMfigloB00IAmgIR0CSZY5RCQcQdX2UKGgGR0BsDKTKT0QLaAdNLQFoCEdAkmW8JQcghnV9lChoBkdAcUflnyup0mgHTScBaAhHQJJmEzTF2mp1fZQoaAZHQG+Ct3OfNA1oB00oAWgIR0CSZoSKm8/VdX2UKGgGR0Bbc7jcVQANaAdN6ANoCEdAkmfPC2tuDXV9lChoBkdAadJHzYmLL2gHTU8BaAhHQJJozck+otN1fZQoaAZHQHDN/echC+loB02YAWgIR0CSaeiCrcTKdX2UKGgGR0BqsUZ3s5XEaAdNAwJoCEdAkmzF3+uNgnV9lChoBkdARYMneBQN1GgHTQYBaAhHQJJtzEit7rt1fZQoaAZHQFsZvCuU2UBoB03oA2gIR0CSbin3ta6jdX2UKGgGR0BxN1lqagEmaAdNQgFoCEdAkm4rELpiZ3V9lChoBkdAcWuUyHmA9WgHTSYBaAhHQJJwOltTDO11fZQoaAZHQHHwWR3eN1hoB00+AWgIR0CScFwLmZE2dX2UKGgGR0Bsdr4rSVnmaAdNJAFoCEdAknCHQ2MsH3V9lChoBkdAcNmNcnmaIGgHTSUBaAhHQJJxFjjJdSl1fZQoaAZHQG9LGV7hNudoB00hAWgIR0CSdldXDFZQdX2UKGgGR0BxkGPOpsGgaAdNwAFoCEdAknZpeJHiFXV9lChoBkdAcLhTsY2sJmgHTUsBaAhHQJJ24I5YHPh1fZQoaAZHQHBlcBp5/spoB02iAWgIR0CSeeF3pwCKdX2UKGgGR0Bs1yQmu1WsaAdNFwFoCEdAknozwc5sCXV9lChoBkdALSowmE4//2gHS/xoCEdAknqh7iQ1aXV9lChoBkdAbrs3R5TqB2gHTUYBaAhHQJJ93eSB9Th1fZQoaAZHQG/XrlFMIu5oB000AWgIR0CSgLsFdLQHdX2UKGgGR0Bv/DRF7UobaAdNgQFoCEdAkoDnGn4wiHV9lChoBkdAZ29m6oVEeGgHTXoCaAhHQJKA/tNSIgx1fZQoaAZHQG7mCXY150NoB01ZAWgIR0CSgYemNzbOdX2UKGgGR0BxmMFkhA4XaAdNlgFoCEdAkoPrcO9WZXV9lChoBkdAcjL/LDAJs2gHTR0DaAhHQJKFvoNd7fJ1fZQoaAZHQHKvAQYk3S9oB01PAWgIR0CShhRhMJyAdX2UKGgGR0ByCYGHHmzTaAdNrgNoCEdAkoc8kyDZlHV9lChoBkdAXgY+HJtBOmgHTegDaAhHQJKHx0NjLB91fZQoaAZHQHEKUuHvc8FoB006AWgIR0CSiGjaPCEYdX2UKGgGR0Bw/VhWo3rEaAdNIQFoCEdAkoqUC/47BHV9lChoBkdAbVEqSX+l02gHTSgBaAhHQJKfyF36hxp1fZQoaAZHQG3igWi1y/9oB01aAWgIR0CSojRLsa86dX2UKGgGR0Bxaj58BuGcaAdNdwFoCEdAkqQc6RyOrHV9lChoBkdAcsoanaWX1WgHTS8BaAhHQJKkLCm/Fit1fZQoaAZHQFEBL+PzWf9oB0vUaAhHQJKkohbGFSN1fZQoaAZHQF6fBmwqy4ZoB00UAmgIR0CSpXw2ETQFdX2UKGgGR0BNxyTyJ9ApaAdL+mgIR0CSph5oXbdrdX2UKGgGR0Byic2R7qptaAdNDQFoCEdAkqaYjGDL83V9lChoBkdAcfff9gnc+WgHTYMCaAhHQJKnnnhbW3B1fZQoaAZHQG3wuskpqh1oB00/AWgIR0CSp80hePaMdX2UKGgGR0Bts86xPfsNaAdNfQFoCEdAkqvFo+Ofd3V9lChoBkdAbSPz0Yj0MGgHTYoCaAhHQJKryDrZ8KJ1fZQoaAZHQHJWk3wTdtVoB00mAWgIR0CSrGaJyhi9dX2UKGgGR0BukRfOUt7KaAdNVwNoCEdAkq0Lp3X7L3V9lChoBkdAcFhfjCHh0mgHTQUBaAhHQJKuXGDL8rJ1fZQoaAZHQHBpCqdYnv5oB00nAWgIR0CSsi69kBjndX2UKGgGR0BxBF7sv7FbaAdNKgFoCEdAkrT5n+Q2dnV9lChoBkdAcG6r9l2/z2gHTSMBaAhHQJK1FAmiQDF1fZQoaAZHQG1exJmNBGBoB01NAWgIR0CStYXbdrO8dX2UKGgGR0BwQDlEJBw/aAdNLAFoCEdAkrXPkWAPNHV9lChoBkdAcVKs0pEx7GgHTVQBaAhHQJK2OkVN5+p1fZQoaAZHQHBJQN9YwItoB01fAWgIR0CStkVuaWondX2UKGgGR0BwmE+jdpIuaAdNLwFoCEdAkrav8Q7LdXV9lChoBkdATonk3juKGmgHTegDaAhHQJK48wi7kGR1fZQoaAZHQHCGOpwS8J5oB00cAWgIR0CSuRD4QBgedX2UKGgGR0BvC4jB2wFDaAdNRANoCEdAkrs3AymALHV9lChoBkdAbhxN+so2GmgHTUUBaAhHQJK7WfthNM51fZQoaAZHQG/ibHQyAQRoB01QAWgIR0CSvOdgOSW7dX2UKGgGR0BxEqMxXXAeaAdNIwFoCEdAkr4/VI7NjnV9lChoBkdAbgm46Oo5xWgHTQMBaAhHQJLAmLLpzLh1fZQoaAZHQG1nrIxQBPtoB00SAWgIR0CSwNKekHlfdX2UKGgGR0BxRBKmKqGUaAdNLQFoCEdAksEy9VWCE3V9lChoBkdAbs4J5VwPy2gHTSUBaAhHQJLBXta6jFh1fZQoaAZHQHCU00Nz8xdoB01hAWgIR0CSxJ06YE4edX2UKGgGR0ByCqVE/jbSaAdNWQFoCEdAksS+HrQgLnV9lChoBkdAcJshm5DqnmgHTT4BaAhHQJLGHxb0OEx1fZQoaAZHQG+eSXMQmNRoB00ZAWgIR0CSxuO8kD6ndX2UKGgGR0BwLSiqQzUJaAdNTwFoCEdAksb6DPGACnV9lChoBkdAbhJQBPsRhGgHTZECaAhHQJLIAK+i8Fp1fZQoaAZHQHDYMJtzjm1oB00gAWgIR0CSyODKoybhdX2UKGgGR0BwzX/95yEMaAdNbgFoCEdAkspRzmwJPnV9lChoBkdAcOALlFMIvGgHTegCaAhHQJLLY2qDK5l1fZQoaAZHQG87WTX8O09oB00cAWgIR0CSzDdSEUTMdX2UKGgGR0Bw3umHgxagaAdNJAFoCEdAksy0rK/203VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}