Model save
Browse files
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/swinv2-small-patch4-window16-256
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- generator
|
8 |
+
model-index:
|
9 |
+
- name: swinv2-small-panorama-IQA
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# swinv2-small-panorama-IQA
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/swinv2-small-patch4-window16-256](https://huggingface.co/microsoft/swinv2-small-patch4-window16-256) on the generator dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0223
|
21 |
+
- Srocc: 0.1291
|
22 |
+
- Lcc: 0.1271
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 1e-05
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 32
|
44 |
+
- seed: 10
|
45 |
+
- gradient_accumulation_steps: 4
|
46 |
+
- total_train_batch_size: 64
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: cosine
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 50.0
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Srocc | Lcc |
|
55 |
+
|:-------------:|:-------:|:----:|:---------------:|:-------:|:-------:|
|
56 |
+
| No log | 0.8571 | 3 | 0.2948 | -0.3890 | -0.3824 |
|
57 |
+
| No log | 2.0 | 7 | 0.1143 | -0.3665 | -0.3732 |
|
58 |
+
| 0.1552 | 2.8571 | 10 | 0.0768 | -0.3477 | -0.3657 |
|
59 |
+
| 0.1552 | 4.0 | 14 | 0.0748 | -0.3395 | -0.3504 |
|
60 |
+
| 0.1552 | 4.8571 | 17 | 0.0517 | -0.3498 | -0.3322 |
|
61 |
+
| 0.0657 | 6.0 | 21 | 0.0553 | -0.3337 | -0.3060 |
|
62 |
+
| 0.0657 | 6.8571 | 24 | 0.0434 | -0.2921 | -0.2810 |
|
63 |
+
| 0.0657 | 8.0 | 28 | 0.0406 | -0.2481 | -0.2570 |
|
64 |
+
| 0.0249 | 8.8571 | 31 | 0.0402 | -0.2346 | -0.2478 |
|
65 |
+
| 0.0249 | 10.0 | 35 | 0.0384 | -0.2076 | -0.2182 |
|
66 |
+
| 0.0249 | 10.8571 | 38 | 0.0317 | -0.1919 | -0.1923 |
|
67 |
+
| 0.0215 | 12.0 | 42 | 0.0310 | -0.1518 | -0.1636 |
|
68 |
+
| 0.0215 | 12.8571 | 45 | 0.0317 | -0.1291 | -0.1549 |
|
69 |
+
| 0.0215 | 14.0 | 49 | 0.0301 | -0.0975 | -0.1292 |
|
70 |
+
| 0.0154 | 14.8571 | 52 | 0.0285 | -0.0804 | -0.1057 |
|
71 |
+
| 0.0154 | 16.0 | 56 | 0.0277 | -0.0461 | -0.0762 |
|
72 |
+
| 0.0154 | 16.8571 | 59 | 0.0263 | -0.0357 | -0.0485 |
|
73 |
+
| 0.0128 | 18.0 | 63 | 0.0263 | -0.0171 | -0.0317 |
|
74 |
+
| 0.0128 | 18.8571 | 66 | 0.0265 | -0.0040 | -0.0236 |
|
75 |
+
| 0.0113 | 20.0 | 70 | 0.0263 | 0.0227 | -0.0089 |
|
76 |
+
| 0.0113 | 20.8571 | 73 | 0.0256 | 0.0254 | 0.0081 |
|
77 |
+
| 0.0113 | 22.0 | 77 | 0.0249 | 0.0493 | 0.0233 |
|
78 |
+
| 0.0104 | 22.8571 | 80 | 0.0246 | 0.0616 | 0.0330 |
|
79 |
+
| 0.0104 | 24.0 | 84 | 0.0242 | 0.0691 | 0.0435 |
|
80 |
+
| 0.0104 | 24.8571 | 87 | 0.0240 | 0.0796 | 0.0518 |
|
81 |
+
| 0.0095 | 26.0 | 91 | 0.0238 | 0.0830 | 0.0679 |
|
82 |
+
| 0.0095 | 26.8571 | 94 | 0.0235 | 0.0929 | 0.0747 |
|
83 |
+
| 0.0095 | 28.0 | 98 | 0.0232 | 0.1003 | 0.0862 |
|
84 |
+
| 0.009 | 28.8571 | 101 | 0.0229 | 0.1050 | 0.0955 |
|
85 |
+
| 0.009 | 30.0 | 105 | 0.0226 | 0.1072 | 0.1052 |
|
86 |
+
| 0.009 | 30.8571 | 108 | 0.0226 | 0.1177 | 0.1110 |
|
87 |
+
| 0.0084 | 32.0 | 112 | 0.0225 | 0.1286 | 0.1152 |
|
88 |
+
| 0.0084 | 32.8571 | 115 | 0.0224 | 0.1296 | 0.1167 |
|
89 |
+
| 0.0084 | 34.0 | 119 | 0.0224 | 0.1296 | 0.1185 |
|
90 |
+
| 0.0085 | 34.8571 | 122 | 0.0224 | 0.1310 | 0.1200 |
|
91 |
+
| 0.0085 | 36.0 | 126 | 0.0224 | 0.1263 | 0.1221 |
|
92 |
+
| 0.0085 | 36.8571 | 129 | 0.0224 | 0.1249 | 0.1233 |
|
93 |
+
| 0.0082 | 38.0 | 133 | 0.0223 | 0.1272 | 0.1247 |
|
94 |
+
| 0.0082 | 38.8571 | 136 | 0.0223 | 0.1272 | 0.1255 |
|
95 |
+
| 0.008 | 40.0 | 140 | 0.0223 | 0.1291 | 0.1265 |
|
96 |
+
| 0.008 | 40.8571 | 143 | 0.0223 | 0.1291 | 0.1269 |
|
97 |
+
| 0.008 | 42.0 | 147 | 0.0223 | 0.1291 | 0.1271 |
|
98 |
+
| 0.0078 | 42.8571 | 150 | 0.0223 | 0.1291 | 0.1271 |
|
99 |
+
|
100 |
+
|
101 |
+
### Framework versions
|
102 |
+
|
103 |
+
- Transformers 4.42.3
|
104 |
+
- Pytorch 2.1.2
|
105 |
+
- Datasets 2.20.0
|
106 |
+
- Tokenizers 0.19.1
|