DiTy commited on
Commit
bdb523f
1 Parent(s): bde460a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +401 -192
README.md CHANGED
@@ -1,199 +1,408 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - conversational
5
+ - gemma2
6
+ - function-calling
7
+ - trl
8
+ license: apache-2.0
9
+ datasets:
10
+ - DiTy/function-calling
11
+ language:
12
+ - en
13
+ pipeline_tag: text-generation
14
  ---
15
 
16
+ # DiTy/gemma-2-2b-it-function-calling
17
 
18
+ > NB: If you want to use the model to call functions in complex, long and confusing dialogues, it is better to use a larger model [DiTy/gemma-2-9b-it-function-calling](https://huggingface.co/DiTy/gemma-2-9b-it-function-calling).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
+ This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) for the **Function Calling** task on non-synthetic data,
21
+ fully annotated by humans only, on the English version of the <ins>*DiTy/function-calling*</ins> dataset.
22
+ <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
+ ## Model card tree
25
+
26
+ * [How prepare your functions (tools) for *Function Calling*](#prepare_func_call)
27
+ * [Just use chat template for generation](#just_chat_template)
28
+ * [Prompt structure and expected content](#roles)
29
+ * [Evaluation of function calling models](#eval)
30
+
31
+ ## Usage (HuggingFace Transformers)
32
+
33
+ Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
34
+ ```bash
35
+ pip install -U transformers
36
+ ```
37
+
38
+ ### <a name="prepare_func_call"></a>Prepare your functions for *Function Calling*
39
+
40
+ You should write the functions (tools) used by the model in *Python code* and make sure to add *Python docstrings* as in the example below:
41
+ ```python
42
+ def get_weather(city: str):
43
+ """
44
+ A function that returns the weather in a given city.
45
+
46
+ Args:
47
+ city: The city to get the weather for.
48
+ """
49
+ import random
50
+
51
+ return "sunny" if random.random() > 0.5 else "rainy"
52
+
53
+
54
+ def get_sunrise_sunset_times(city: str):
55
+ """
56
+ A function that returns the time of sunrise and sunset at the present moment, for a given city, in the form of a list: [sunrise_time, sunset_time].
57
+
58
+ Args:
59
+ city: The city to get the sunrise and sunset times for.
60
+ """
61
+
62
+ return ["6:00 AM", "6:00 PM"]
63
+ ```
64
+
65
+ ### <a name="just_chat_template"></a>Just use chat template
66
+
67
+ Next, you need to download the model and tokenizer:
68
+ ```python
69
+ import torch
70
+ from transformers import AutoTokenizer, AutoModelForCausalLM
71
+
72
+ model = AutoModelForCausalLM.from_pretrained(
73
+ "DiTy/gemma-2-2b-it-function-calling",
74
+ device_map="auto",
75
+ torch_dtype=torch.bfloat16, # use float16 or float32 if bfloat16 is not available to you.
76
+ cache_dir=PATH_TO_MODEL_DIR, # optional
77
+ )
78
+ tokenizer = AutoTokenizer.from_pretrained(
79
+ "DiTy/gemma-2-2b-it-function-calling",
80
+ cache_dir=PATH_TO_MODEL_DIR, # optional
81
+ )
82
+ ```
83
+
84
+ To get the result of generation, just use `apply_chat_template`. In order to take into account our written functions (tools),
85
+ we need to pass them as a list through the `tools` attribute and also use `add_prompt_generation=True`.
86
+ ```python
87
+ history_messages = [
88
+ {"role": "system", "content": "You are a helpful assistant with access to the following functions. Use them if required - "},
89
+ {"role": "user", "content": "Hi, can you tell me the time of sunrise in Los Angeles?"},
90
+ ]
91
+
92
+ inputs = tokenizer.apply_chat_template(
93
+ history_messages,
94
+ tokenize=False,
95
+ add_generation_prompt=True, # adding prompt for generation
96
+ tools=[get_weather, get_sunrise_sunset_times], # our functions (tools)
97
+ )
98
+ ```
99
+
100
+ Then our `inputs` will look like this:
101
+ ```
102
+ <bos><start_of_turn>user
103
+ You are a helpful assistant with access to the following functions. Use them if required - {
104
+ "name": "get_weather",
105
+ "description": "A function that returns the weather in a given city.",
106
+ "parameters": {
107
+ "type": "object",
108
+ "properties": {
109
+ "city": {
110
+ "type": "string",
111
+ "description": "The city to get the weather for."
112
+ }
113
+ },
114
+ "required": [
115
+ "city"
116
+ ]
117
+ }
118
+ },
119
+ {
120
+ "name": "get_sunrise_sunset_times",
121
+ "description": "A function that returns the time of sunrise and sunset at the present moment, for a given city, in the form of a list: [sunrise_time, sunset_time].",
122
+ "parameters": {
123
+ "type": "object",
124
+ "properties": {
125
+ "city": {
126
+ "type": "string",
127
+ "description": "The city to get the sunrise and sunset times for."
128
+ }
129
+ },
130
+ "required": [
131
+ "city"
132
+ ]
133
+ }
134
+ }
135
+
136
+ Hi, can you tell me the time of sunrise in Los Angeles?<end_of_turn>
137
+ <start_of_turn>model
138
+
139
+ ```
140
+
141
+ Now we can generate a model's response.
142
+ Be careful because, after `apply_chat_template`, there is no need to *add special tokens* during tokenization. So, use `add_special_tokens=False`:
143
+ ```python
144
+ terminator_ids = [
145
+ tokenizer.eos_token_id,
146
+ tokenizer.convert_tokens_to_ids("<end_of_turn>"),
147
+ ]
148
+
149
+ prompt_ids = tokenizer.encode(inputs, add_special_tokens=False, return_tensors='pt').to(model.device)
150
+ generated_ids = model.generate(
151
+ prompt_ids,
152
+ max_new_tokens=512,
153
+ eos_token_id=terminator_ids,
154
+ bos_token_id=tokenizer.bos_token_id,
155
+ )
156
+ generated_response = tokenizer.decode(generated_ids[0][prompt_ids.shape[-1]:], skip_special_tokens=False) # `skip_special_tokens=False` for debug
157
+ ```
158
+
159
+ We get the generation as a function call:
160
+ ```
161
+ Function call: {"name": "get_sunrise_sunset_times", "arguments": {"city": "Los Angeles"}}<end_of_turn>
162
+ ```
163
+
164
+ Great, now we can pick up and process the results with our *called function*, and then provide the model with the *function's response*:
165
+ ```python
166
+ history_messages = [
167
+ {"role": "system", "content": "You are a helpful assistant with access to the following functions. Use them if required - "},
168
+ {"role": "user", "content": "Hi, can you tell me the time of sunrise in Los Angeles?"},
169
+ {"role": "function-call", "content": '{"name": "get_sunrise_sunset_times", "arguments": {"city": "Los Angeles"}}'},
170
+ {"role": "function-response", "content": '{"times_list": ["6:00 AM", "6:00 PM"]}'}, # a hypothetical response from our function
171
+ ]
172
+
173
+ inputs = tokenizer.apply_chat_template(
174
+ history_messages,
175
+ tokenize=False,
176
+ add_generation_prompt=True, # adding prompt for generation
177
+ tools=[get_weather, get_sunrise_sunset_times], # our functions (tools)
178
+ )
179
+ ```
180
+
181
+ Let's make sure the `inputs` are correct:
182
+ ```
183
+ <bos><start_of_turn>user
184
+ You are a helpful assistant with access to the following functions. Use them if required - {
185
+ "name": "get_weather",
186
+ "description": "A function that returns the weather in a given city.",
187
+ "parameters": {
188
+ "type": "object",
189
+ "properties": {
190
+ "city": {
191
+ "type": "string",
192
+ "description": "The city to get the weather for."
193
+ }
194
+ },
195
+ "required": [
196
+ "city"
197
+ ]
198
+ }
199
+ },
200
+ {
201
+ "name": "get_sunrise_sunset_times",
202
+ "description": "A function that returns the time of sunrise and sunset at the present moment, for a given city, in the form of a list: [sunrise_time, sunset_time].",
203
+ "parameters": {
204
+ "type": "object",
205
+ "properties": {
206
+ "city": {
207
+ "type": "string",
208
+ "description": "The city to get the sunrise and sunset times for."
209
+ }
210
+ },
211
+ "required": [
212
+ "city"
213
+ ]
214
+ }
215
+ }
216
+
217
+ Hi, can you tell me the time of sunrise in Los Angeles?<end_of_turn>
218
+ <start_of_turn>model
219
+ Function call: {"name": "get_sunrise_sunset_times", "arguments": {"city": "Los Angeles"}}<end_of_turn>
220
+ <start_of_turn>user
221
+ Function response: {"times_list": ["6:00 AM", "6:00 PM"]}<end_of_turn>
222
+ <start_of_turn>model
223
+
224
+ ```
225
+
226
+ Similarly, we generate a response from the model:
227
+ ```python
228
+ prompt_ids = tokenizer.encode(inputs, add_special_tokens=False, return_tensors='pt').to(model.device)
229
+ generated_ids = model.generate(
230
+ prompt_ids,
231
+ max_new_tokens=512,
232
+ eos_token_id=terminator_ids,
233
+ bos_token_id=tokenizer.bos_token_id,
234
+ )
235
+ generated_response = tokenizer.decode(generated_ids[0][prompt_ids.shape[-1]:], skip_special_tokens=False) # `skip_special_tokens=False` for debug
236
+ ```
237
+
238
+ As a result, we get the model's response:
239
+ ```
240
+ The sunrise time in Los Angeles is 6:00 AM.<end_of_turn>
241
+ ```
242
+
243
+ ## Usage via transformers `pipeline`
244
+
245
+ <details>
246
+ <summary>
247
+ Generation via pipeline
248
+ </summary>
249
+
250
+ ```python
251
+ from transformers import pipeline
252
+
253
+
254
+ generation_pipeline = pipeline(
255
+ "text-generation",
256
+ model="DiTy/gemma-2-2b-it-function-calling",
257
+ model_kwargs={
258
+ "torch_dtype": torch.bfloat16, # use float16 or float32 if bfloat16 is not supported for you.
259
+ "cache_dir": PATH_TO_MODEL_DIR, # OPTIONAL
260
+ },
261
+ device_map="auto",
262
+ )
263
+
264
+ history_messages = [
265
+ {"role": "system", "content": "You are a helpful assistant with access to the following functions. Use them if required - "},
266
+ {"role": "user", "content": "Hi, can you tell me the time of sunrise in Los Angeles?"},
267
+ {"role": "function-call", "content": '{"name": "get_sunrise_sunset_times", "arguments": {"city": "Los Angeles"}}'},
268
+ {"role": "function-response", "content": '{"times_list": ["6:00 AM", "6:00 PM"]}'},
269
+ ]
270
+
271
+ inputs = generation_pipeline.tokenizer.apply_chat_template(
272
+ history_messages,
273
+ tokenize=False,
274
+ add_generation_prompt=True,
275
+ tools=[get_weather, get_sunrise_sunset_times],
276
+ )
277
+
278
+ terminator_ids = [
279
+ generation_pipeline.tokenizer.eos_token_id,
280
+ generation_pipeline.tokenizer.convert_tokens_to_ids("<end_of_turn>")
281
+ ]
282
+
283
+ outputs = generation_pipeline(
284
+ inputs,
285
+ max_new_tokens=512,
286
+ eos_token_id=terminator_ids,
287
+ )
288
+
289
+ print(outputs[0]["generated_text"][len(inputs):])
290
+ ```
291
+
292
+ </details>
293
+
294
+ ## <a name="roles"></a>Prompt structure and expected content
295
+
296
+ For the most correct operation of the model, it is assumed that `apply_chat_template` will be used.
297
+ It is necessary to transmit the message history in a certain format.
298
+ ```python
299
+ history_messages = [
300
+ {"role": "...", "content": "..."},
301
+ ...
302
+ ]
303
+ ```
304
+
305
+ The following roles are available for use:
306
+
307
+ * `system` - an optional role, its content is always placed at the very beginning and before listing the functions available to the model (tools).
308
+ You can always use the standard option that was used during the training: ***"You are a helpful assistant with access to the following functions. Use them if required - "***
309
+ * `user` - the user's request is transmitted through this role.
310
+ * `function-call` - The body of the function call is passed through this role.
311
+ Although the model is trained to generate a function call in the form of ***"Function call: {...}\<end_of_turn\>"***, you should still pass only the body ***"{...}"***
312
+ to the *"content"* field, since using `apply_chat_template`, the postscript in the instructions is added automatically.
313
+ * `function-response` - in this role, we must pass the response of our function in the *"content"* field as a dictionary ***'{"name_returnable_value": value}'***.
314
+ * `model` - the content under this role is considered to be the generated text of the model.
315
+
316
+ ### Chat history with *Function Calling*
317
+
318
+ ```
319
+ [
320
+ {"role": "system", "content": "You are a helpful assistant with access to the following functions. Use them if required - "},
321
+ {"role": "user", "content": "Hi, can you tell me the time of sunrise in Los Angeles?"},
322
+ {"role": "function-call", "content": '{"name": "get_sunrise_sunset_times", "arguments": {"city": "Los Angeles"}}'},
323
+ {"role": "function-response", "content": '{"times_list": ["6:00 AM", "6:00 PM"]}'},
324
+ ]
325
+ ```
326
+
327
+ It looks like:
328
+ ```
329
+ <bos><start_of_turn>user
330
+ You are a helpful assistant with access to the following functions. Use them if required - {
331
+ "name": "get_weather",
332
+ "description": "A function that returns the weather in a given city.",
333
+ "parameters": {
334
+ "type": "object",
335
+ "properties": {
336
+ "city": {
337
+ "type": "string",
338
+ "description": "The city to get the weather for."
339
+ }
340
+ },
341
+ "required": [
342
+ "city"
343
+ ]
344
+ }
345
+ },
346
+ {
347
+ "name": "get_sunrise_sunset_times",
348
+ "description": "A function that returns the time of sunrise and sunset at the present moment, for a given city, in the form of a list: [sunrise_time, sunset_time].",
349
+ "parameters": {
350
+ "type": "object",
351
+ "properties": {
352
+ "city": {
353
+ "type": "string",
354
+ "description": "The city to get the sunrise and sunset times for."
355
+ }
356
+ },
357
+ "required": [
358
+ "city"
359
+ ]
360
+ }
361
+ }
362
+
363
+ Hi, can you tell me the time of sunrise in Los Angeles?<end_of_turn>
364
+ <start_of_turn>model
365
+ Function call: {"name": "get_sunrise_sunset_times", "arguments": {"city": "Los Angeles"}}<end_of_turn>
366
+ <start_of_turn>user
367
+ Function response: {"times_list": ["6:00 AM", "6:00 PM"]}<end_of_turn>
368
+ ```
369
+
370
+
371
+ ### Chat history with a standard user-model template
372
+
373
+ ```
374
+ [
375
+ {"role": "system", "content": "You are a helpful assistant"},
376
+ {"role": "user", "content": "Tell me about California"},
377
+ ]
378
+ ```
379
+
380
+ It looks like:
381
+ ```
382
+ <bos><start_of_turn>user
383
+ You are a helpful assistant
384
+
385
+ Tell me about California<end_of_turn>
386
+ ```
387
+
388
+ ## <a name="eval"></a>Evaluation
389
+
390
+ During the learning process, the validation error was approximated to the following values:
391
+
392
+ | **Model** | **Generation Language** | **Approximately Validation Loss** |
393
+ | :-----: | :-----: | :-----: |
394
+ | [DiTy/gemma-2-9b-it-function-calling](https://huggingface.co/DiTy/gemma-2-9b-it-function-calling) | EN | 0.5 |
395
+ | **[DiTy/gemma-2-2b-it-function-calling](https://huggingface.co/DiTy/gemma-2-2b-it-function-calling)** | EN | 0.66 |
396
+
397
+ ## Citation
398
+
399
+ ```none
400
+ @article{gemma_2024,
401
+ title={Gemma},
402
+ url={https://www.kaggle.com/m/3301},
403
+ DOI={10.34740/KAGGLE/M/3301},
404
+ publisher={Kaggle},
405
+ author={Gemma Team},
406
+ year={2024}
407
+ }
408
+ ```