End of training
Browse files- README.md +67 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: camembert/camembert-base
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: camembert-base-finetuned-ner
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# camembert-base-finetuned-ner
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [camembert/camembert-base](https://huggingface.co/camembert/camembert-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0280
|
23 |
+
- Precision: 0.9642
|
24 |
+
- Recall: 0.9675
|
25 |
+
- F1: 0.9658
|
26 |
+
- Accuracy: 0.9921
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 3
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.0316 | 1.0 | 15205 | 0.0300 | 0.9555 | 0.9609 | 0.9582 | 0.9906 |
|
58 |
+
| 0.0214 | 2.0 | 30410 | 0.0276 | 0.9624 | 0.9668 | 0.9646 | 0.9918 |
|
59 |
+
| 0.0156 | 3.0 | 45615 | 0.0280 | 0.9642 | 0.9675 | 0.9658 | 0.9921 |
|
60 |
+
|
61 |
+
|
62 |
+
### Framework versions
|
63 |
+
|
64 |
+
- Transformers 4.33.0.dev0
|
65 |
+
- Pytorch 2.0.1+cu118
|
66 |
+
- Datasets 2.14.4
|
67 |
+
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 440233705
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cfece898872ac3dab4f53d8f578b8bf54b7376276b2c7ff6377915702dab135
|
3 |
size 440233705
|