Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.01 +/- 0.60
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:803a79ce7332a1150d59da4b2a66c2e8f394f0286350538dde59fdbc9f1f2e5d
|
3 |
+
size 108159
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f833f2b3c70>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f833f2aac00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1686907316560722239,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfXjaPuB9frvUdQc/fXjaPuB9frvUdQc/fXjaPuB9frvUdQc/fXjaPuB9frvUdQc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALShgP7F+z7+upH+/McLLPzyP8z5MsZi/oK4DP1eHy79oIou/K9pFv55PTr4KKKm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB9eNo+4H1+u9R1Bz/cLgA8N9xGu/jX5zl9eNo+4H1+u9R1Bz/cLgA8N9xGu/jX5zl9eNo+4H1+u9R1Bz/cLgA8N9xGu/jX5zl9eNo+4H1+u9R1Bz/cLgA8N9xGu/jX5zmUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.4267005 -0.00388324 0.52914166]\n [ 0.4267005 -0.00388324 0.52914166]\n [ 0.4267005 -0.00388324 0.52914166]\n [ 0.4267005 -0.00388324 0.52914166]]",
|
38 |
+
"desired_goal": "[[ 0.87561303 -1.6210538 -0.99860656]\n [ 1.5918638 0.47570217 -1.1929107 ]\n [ 0.5143833 -1.5900677 -1.0869875 ]\n [-0.7728602 -0.20147559 -1.3215344 ]]",
|
39 |
+
"observation": "[[ 4.2670050e-01 -3.8832352e-03 5.2914166e-01 7.8236721e-03\n -3.0343661e-03 4.4220663e-04]\n [ 4.2670050e-01 -3.8832352e-03 5.2914166e-01 7.8236721e-03\n -3.0343661e-03 4.4220663e-04]\n [ 4.2670050e-01 -3.8832352e-03 5.2914166e-01 7.8236721e-03\n -3.0343661e-03 4.4220663e-04]\n [ 4.2670050e-01 -3.8832352e-03 5.2914166e-01 7.8236721e-03\n -3.0343661e-03 4.4220663e-04]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYGUCvr0AFr7zBM09vL7OPUnt3jv84L09XBU7uxezgz2wnY8+GoRLOwjj4bwv5Fs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.12733984 -0.14648719 0.1001071 ]\n [ 0.10094973 0.00680319 0.09271428]\n [-0.00285467 0.06430643 0.28049994]\n [ 0.00310541 -0.02757408 0.21473764]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8bxUbMwLAsCUhpRSlIwBbJRLMowBdJRHQKihLnqVyFR1fZQoaAZoCWgPQwidLSC0Hj72v5SGlFKUaBVLMmgWR0CooPUYj0L/dX2UKGgGaAloD0MIPpY+dEF9/r+UhpRSlGgVSzJoFkdAqKC8Dlo11nV9lChoBmgJaA9DCMNi1LX2vgLAlIaUUpRoFUsyaBZHQKiggxREWqN1fZQoaAZoCWgPQwigFoOHad/5v5SGlFKUaBVLMmgWR0CooxTGo73gdX2UKGgGaAloD0MIjbRU3o7QDcCUhpRSlGgVSzJoFkdAqKLb9hqj8HV9lChoBmgJaA9DCN8Vwf9Wcve/lIaUUpRoFUsyaBZHQKiio4//vOR1fZQoaAZoCWgPQwhcqtIW13jwv5SGlFKUaBVLMmgWR0Coomp/wy6+dX2UKGgGaAloD0MIJlZGI5+X/L+UhpRSlGgVSzJoFkdAqKUNgSeyzHV9lChoBmgJaA9DCFGhurn4W/q/lIaUUpRoFUsyaBZHQKik1Io3Jgd1fZQoaAZoCWgPQwiAZDp0eh78v5SGlFKUaBVLMmgWR0CopJv1UVBVdX2UKGgGaAloD0MI7iHhe39D8r+UhpRSlGgVSzJoFkdAqKRiuyNXHXV9lChoBmgJaA9DCH2VfOwukPy/lIaUUpRoFUsyaBZHQKim+iZfD1p1fZQoaAZoCWgPQwgMWkjA6LL9v5SGlFKUaBVLMmgWR0CopsEgGKQ8dX2UKGgGaAloD0MIJjW0AdiA6r+UhpRSlGgVSzJoFkdAqKaIwXZXdXV9lChoBmgJaA9DCBgK2A5G7P2/lIaUUpRoFUsyaBZHQKimT8hs67x1fZQoaAZoCWgPQwjuX1lpUqoBwJSGlFKUaBVLMmgWR0CoqPwiA2AHdX2UKGgGaAloD0MIPKWD9X/O+7+UhpRSlGgVSzJoFkdAqKjDE74i5nV9lChoBmgJaA9DCElKehhaXQXAlIaUUpRoFUsyaBZHQKioitAcDKZ1fZQoaAZoCWgPQwiaCBueXmkJwJSGlFKUaBVLMmgWR0CoqFIatLcsdX2UKGgGaAloD0MILCl3n+Mj/b+UhpRSlGgVSzJoFkdAqKpE1wYLs3V9lChoBmgJaA9DCBWoxeBhmgLAlIaUUpRoFUsyaBZHQKiqCqkuYhN1fZQoaAZoCWgPQwgst7QaEjcAwJSGlFKUaBVLMmgWR0CoqdE0aZQYdX2UKGgGaAloD0MIDcNHxJToA8CUhpRSlGgVSzJoFkdAqKmXR9gF5nV9lChoBmgJaA9DCPay7bQ1ovu/lIaUUpRoFUsyaBZHQKirZ1L8Jld1fZQoaAZoCWgPQwiyTL9EvHUIwJSGlFKUaBVLMmgWR0Coqy1J+UhWdX2UKGgGaAloD0MIwha7fVZZ+L+UhpRSlGgVSzJoFkdAqKrz6zmfXnV9lChoBmgJaA9DCF6FlJ9UyxDAlIaUUpRoFUsyaBZHQKiqugmJFb51fZQoaAZoCWgPQwit3XahuU73v5SGlFKUaBVLMmgWR0CorH+VTrE+dX2UKGgGaAloD0MINV8lH7vL/r+UhpRSlGgVSzJoFkdAqKxFbaAWi3V9lChoBmgJaA9DCKRVLekoJwrAlIaUUpRoFUsyaBZHQKisC/L1VYJ1fZQoaAZoCWgPQwj5ghYSMDr9v5SGlFKUaBVLMmgWR0Coq9Id2gWadX2UKGgGaAloD0MIKuW1ErqL+b+UhpRSlGgVSzJoFkdAqK2ciKR+0HV9lChoBmgJaA9DCOYDAp1JOwLAlIaUUpRoFUsyaBZHQKitYl5WzWx1fZQoaAZoCWgPQwiLUGwFTasVwJSGlFKUaBVLMmgWR0CorSjnmq5tdX2UKGgGaAloD0MIPGu3XWiuBMCUhpRSlGgVSzJoFkdAqKzvA9FF2HV9lChoBmgJaA9DCIY5QZscPgjAlIaUUpRoFUsyaBZHQKiussRQJol1fZQoaAZoCWgPQwgDBkmfVhEIwJSGlFKUaBVLMmgWR0CorniZnctYdX2UKGgGaAloD0MINuSfGcRHDMCUhpRSlGgVSzJoFkdAqK4/MINVinV9lChoBmgJaA9DCNLGEWvxqQDAlIaUUpRoFUsyaBZHQKiuBUUfxMF1fZQoaAZoCWgPQwhX7ZqQ1tgIwJSGlFKUaBVLMmgWR0Cor8yfcvdudX2UKGgGaAloD0MITu/i/bi9/L+UhpRSlGgVSzJoFkdAqK+SeK8+R3V9lChoBmgJaA9DCDvgumJGmBbAlIaUUpRoFUsyaBZHQKivWSK3uu11fZQoaAZoCWgPQwiZfol46zwBwJSGlFKUaBVLMmgWR0Corx8U21lYdX2UKGgGaAloD0MIQj9Tr1tkAcCUhpRSlGgVSzJoFkdAqLDkOkLx7XV9lChoBmgJaA9DCKMBvAUSVAXAlIaUUpRoFUsyaBZHQKiwqiosI3R1fZQoaAZoCWgPQwjZPuQtV/8EwJSGlFKUaBVLMmgWR0CosHC66J66dX2UKGgGaAloD0MIibMiaqLPA8CUhpRSlGgVSzJoFkdAqLA23pfQbHV9lChoBmgJaA9DCJgXYB+d+v2/lIaUUpRoFUsyaBZHQKiyAOS4e911fZQoaAZoCWgPQwibdFsiF/wHwJSGlFKUaBVLMmgWR0CoscbZvkzXdX2UKGgGaAloD0MIE0azsn1IAcCUhpRSlGgVSzJoFkdAqLGNcOby6XV9lChoBmgJaA9DCIC77NedTgfAlIaUUpRoFUsyaBZHQKixU4Otnwp1fZQoaAZoCWgPQwhW0opvKJwRwJSGlFKUaBVLMmgWR0CosyiWVu76dX2UKGgGaAloD0MINq0UArmE/L+UhpRSlGgVSzJoFkdAqLLuZE2HcnV9lChoBmgJaA9DCESF6ubi7/e/lIaUUpRoFUsyaBZHQKiytRYzSCx1fZQoaAZoCWgPQwgju9IyUg8HwJSGlFKUaBVLMmgWR0CosnstkFwDdX2UKGgGaAloD0MIizVc5J6u6b+UhpRSlGgVSzJoFkdAqLRA+r2g4HV9lChoBmgJaA9DCI3TEFX4MwDAlIaUUpRoFUsyaBZHQKi0BrLQokR1fZQoaAZoCWgPQwjNdRppqVwIwJSGlFKUaBVLMmgWR0Cos80u+RHPdX2UKGgGaAloD0MI1LZhFAQvAMCUhpRSlGgVSzJoFkdAqLOTgTAWSHV9lChoBmgJaA9DCHejj/mAoATAlIaUUpRoFUsyaBZHQKi1ar/82rJ1fZQoaAZoCWgPQwinBprPudv9v5SGlFKUaBVLMmgWR0CotTCfg75mdX2UKGgGaAloD0MIXJGYoIbPAMCUhpRSlGgVSzJoFkdAqLT3GlyimHV9lChoBmgJaA9DCEiJXdvbrfe/lIaUUpRoFUsyaBZHQKi0vTgEU0x1fZQoaAZoCWgPQwi8zob8MwP7v5SGlFKUaBVLMmgWR0CotpCpNsWPdX2UKGgGaAloD0MI6gYKvJPPBMCUhpRSlGgVSzJoFkdAqLZWlGgBcXV9lChoBmgJaA9DCAA49uy5rADAlIaUUpRoFUsyaBZHQKi2HSm65G11fZQoaAZoCWgPQwgVysLX11oKwJSGlFKUaBVLMmgWR0CoteMwtapxdX2UKGgGaAloD0MI+YbCZ+tABsCUhpRSlGgVSzJoFkdAqLexF3IMjXV9lChoBmgJaA9DCPD7Ny9OHAPAlIaUUpRoFUsyaBZHQKi3dx8UmD11fZQoaAZoCWgPQwglA0AVN44HwJSGlFKUaBVLMmgWR0Cotz2qtHQQdX2UKGgGaAloD0MIDi2yne9nCsCUhpRSlGgVSzJoFkdAqLcDxb0OE3V9lChoBmgJaA9DCLGmsijsog7AlIaUUpRoFUsyaBZHQKi4w5IYm9h1fZQoaAZoCWgPQwibdFsiFxwDwJSGlFKUaBVLMmgWR0CouImTkhicdX2UKGgGaAloD0MI5lsf1hvVBcCUhpRSlGgVSzJoFkdAqLhP4yoGZHV9lChoBmgJaA9DCC+kw0MYv/2/lIaUUpRoFUsyaBZHQKi4Fd/rjYJ1fZQoaAZoCWgPQwj+Rjtu+N3yv5SGlFKUaBVLMmgWR0CoufuIhyKfdX2UKGgGaAloD0MIhGIraFqi97+UhpRSlGgVSzJoFkdAqLnBYLb5/XV9lChoBmgJaA9DCLMj1Xd+0fC/lIaUUpRoFUsyaBZHQKi5h+Kjzqd1fZQoaAZoCWgPQwg0Tdh+Msbqv5SGlFKUaBVLMmgWR0CouU38O09hdX2UKGgGaAloD0MIfsSvWMPlCcCUhpRSlGgVSzJoFkdAqLsTByjpLXV9lChoBmgJaA9DCLG/7J487Pa/lIaUUpRoFUsyaBZHQKi62PK+zt11fZQoaAZoCWgPQwhrDaX2Ilr5v5SGlFKUaBVLMmgWR0Coup9krf+CdX2UKGgGaAloD0MIyR6hZkjVBcCUhpRSlGgVSzJoFkdAqLpleF+NLnV9lChoBmgJaA9DCPMbJhqkoPO/lIaUUpRoFUsyaBZHQKi8MKqGUOd1fZQoaAZoCWgPQwg5l+Kqsm8AwJSGlFKUaBVLMmgWR0Cou/Z2IO6NdX2UKGgGaAloD0MI2xmmttShAsCUhpRSlGgVSzJoFkdAqLu88PnSv3V9lChoBmgJaA9DCPTeGAKAAwXAlIaUUpRoFUsyaBZHQKi7gwKSgXd1fZQoaAZoCWgPQwh7aB8r+K0DwJSGlFKUaBVLMmgWR0CovUR9PUKBdX2UKGgGaAloD0MIE+8AT1oYDcCUhpRSlGgVSzJoFkdAqL0KX2M85nV9lChoBmgJaA9DCGheDrvvOAXAlIaUUpRoFUsyaBZHQKi80NNJvpB1fZQoaAZoCWgPQwjTpBR0ewn5v5SGlFKUaBVLMmgWR0CovJbfpD/mdX2UKGgGaAloD0MI1xTI7CyaAMCUhpRSlGgVSzJoFkdAqL8JIH1OCXV9lChoBmgJaA9DCDc5fNKJxAfAlIaUUpRoFUsyaBZHQKi+z+uvECN1fZQoaAZoCWgPQwhBZfz7jAv1v5SGlFKUaBVLMmgWR0Covpc2itaIdX2UKGgGaAloD0MIZyrEI/Hy+7+UhpRSlGgVSzJoFkdAqL5d8E3bVXV9lChoBmgJaA9DCPyp8dJNAgDAlIaUUpRoFUsyaBZHQKjAyqYJE6V1fZQoaAZoCWgPQwgZc9cS8gH/v5SGlFKUaBVLMmgWR0CowJEPtlZpdX2UKGgGaAloD0MI+gs9YvQ8AMCUhpRSlGgVSzJoFkdAqMBYVbiZOXV9lChoBmgJaA9DCO9zfLQ4IwDAlIaUUpRoFUsyaBZHQKjAHx4IKMN1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:902c83b70adf0c422e541a61d7aaa440e5e4923fed962e4f1ba92186edc5c09b
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63057b592c151181c811c0e80f4d8c784534fb49bc4d070b21f08901a0418acd
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f833f2b3c70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f833f2aac00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686907316560722239, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfXjaPuB9frvUdQc/fXjaPuB9frvUdQc/fXjaPuB9frvUdQc/fXjaPuB9frvUdQc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALShgP7F+z7+upH+/McLLPzyP8z5MsZi/oK4DP1eHy79oIou/K9pFv55PTr4KKKm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB9eNo+4H1+u9R1Bz/cLgA8N9xGu/jX5zl9eNo+4H1+u9R1Bz/cLgA8N9xGu/jX5zl9eNo+4H1+u9R1Bz/cLgA8N9xGu/jX5zl9eNo+4H1+u9R1Bz/cLgA8N9xGu/jX5zmUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4267005 -0.00388324 0.52914166]\n [ 0.4267005 -0.00388324 0.52914166]\n [ 0.4267005 -0.00388324 0.52914166]\n [ 0.4267005 -0.00388324 0.52914166]]", "desired_goal": "[[ 0.87561303 -1.6210538 -0.99860656]\n [ 1.5918638 0.47570217 -1.1929107 ]\n [ 0.5143833 -1.5900677 -1.0869875 ]\n [-0.7728602 -0.20147559 -1.3215344 ]]", "observation": "[[ 4.2670050e-01 -3.8832352e-03 5.2914166e-01 7.8236721e-03\n -3.0343661e-03 4.4220663e-04]\n [ 4.2670050e-01 -3.8832352e-03 5.2914166e-01 7.8236721e-03\n -3.0343661e-03 4.4220663e-04]\n [ 4.2670050e-01 -3.8832352e-03 5.2914166e-01 7.8236721e-03\n -3.0343661e-03 4.4220663e-04]\n [ 4.2670050e-01 -3.8832352e-03 5.2914166e-01 7.8236721e-03\n -3.0343661e-03 4.4220663e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYGUCvr0AFr7zBM09vL7OPUnt3jv84L09XBU7uxezgz2wnY8+GoRLOwjj4bwv5Fs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12733984 -0.14648719 0.1001071 ]\n [ 0.10094973 0.00680319 0.09271428]\n [-0.00285467 0.06430643 0.28049994]\n [ 0.00310541 -0.02757408 0.21473764]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8bxUbMwLAsCUhpRSlIwBbJRLMowBdJRHQKihLnqVyFR1fZQoaAZoCWgPQwidLSC0Hj72v5SGlFKUaBVLMmgWR0CooPUYj0L/dX2UKGgGaAloD0MIPpY+dEF9/r+UhpRSlGgVSzJoFkdAqKC8Dlo11nV9lChoBmgJaA9DCMNi1LX2vgLAlIaUUpRoFUsyaBZHQKiggxREWqN1fZQoaAZoCWgPQwigFoOHad/5v5SGlFKUaBVLMmgWR0CooxTGo73gdX2UKGgGaAloD0MIjbRU3o7QDcCUhpRSlGgVSzJoFkdAqKLb9hqj8HV9lChoBmgJaA9DCN8Vwf9Wcve/lIaUUpRoFUsyaBZHQKiio4//vOR1fZQoaAZoCWgPQwhcqtIW13jwv5SGlFKUaBVLMmgWR0Coomp/wy6+dX2UKGgGaAloD0MIJlZGI5+X/L+UhpRSlGgVSzJoFkdAqKUNgSeyzHV9lChoBmgJaA9DCFGhurn4W/q/lIaUUpRoFUsyaBZHQKik1Io3Jgd1fZQoaAZoCWgPQwiAZDp0eh78v5SGlFKUaBVLMmgWR0CopJv1UVBVdX2UKGgGaAloD0MI7iHhe39D8r+UhpRSlGgVSzJoFkdAqKRiuyNXHXV9lChoBmgJaA9DCH2VfOwukPy/lIaUUpRoFUsyaBZHQKim+iZfD1p1fZQoaAZoCWgPQwgMWkjA6LL9v5SGlFKUaBVLMmgWR0CopsEgGKQ8dX2UKGgGaAloD0MIJjW0AdiA6r+UhpRSlGgVSzJoFkdAqKaIwXZXdXV9lChoBmgJaA9DCBgK2A5G7P2/lIaUUpRoFUsyaBZHQKimT8hs67x1fZQoaAZoCWgPQwjuX1lpUqoBwJSGlFKUaBVLMmgWR0CoqPwiA2AHdX2UKGgGaAloD0MIPKWD9X/O+7+UhpRSlGgVSzJoFkdAqKjDE74i5nV9lChoBmgJaA9DCElKehhaXQXAlIaUUpRoFUsyaBZHQKioitAcDKZ1fZQoaAZoCWgPQwiaCBueXmkJwJSGlFKUaBVLMmgWR0CoqFIatLcsdX2UKGgGaAloD0MILCl3n+Mj/b+UhpRSlGgVSzJoFkdAqKpE1wYLs3V9lChoBmgJaA9DCBWoxeBhmgLAlIaUUpRoFUsyaBZHQKiqCqkuYhN1fZQoaAZoCWgPQwgst7QaEjcAwJSGlFKUaBVLMmgWR0CoqdE0aZQYdX2UKGgGaAloD0MIDcNHxJToA8CUhpRSlGgVSzJoFkdAqKmXR9gF5nV9lChoBmgJaA9DCPay7bQ1ovu/lIaUUpRoFUsyaBZHQKirZ1L8Jld1fZQoaAZoCWgPQwiyTL9EvHUIwJSGlFKUaBVLMmgWR0Coqy1J+UhWdX2UKGgGaAloD0MIwha7fVZZ+L+UhpRSlGgVSzJoFkdAqKrz6zmfXnV9lChoBmgJaA9DCF6FlJ9UyxDAlIaUUpRoFUsyaBZHQKiqugmJFb51fZQoaAZoCWgPQwit3XahuU73v5SGlFKUaBVLMmgWR0CorH+VTrE+dX2UKGgGaAloD0MINV8lH7vL/r+UhpRSlGgVSzJoFkdAqKxFbaAWi3V9lChoBmgJaA9DCKRVLekoJwrAlIaUUpRoFUsyaBZHQKisC/L1VYJ1fZQoaAZoCWgPQwj5ghYSMDr9v5SGlFKUaBVLMmgWR0Coq9Id2gWadX2UKGgGaAloD0MIKuW1ErqL+b+UhpRSlGgVSzJoFkdAqK2ciKR+0HV9lChoBmgJaA9DCOYDAp1JOwLAlIaUUpRoFUsyaBZHQKitYl5WzWx1fZQoaAZoCWgPQwiLUGwFTasVwJSGlFKUaBVLMmgWR0CorSjnmq5tdX2UKGgGaAloD0MIPGu3XWiuBMCUhpRSlGgVSzJoFkdAqKzvA9FF2HV9lChoBmgJaA9DCIY5QZscPgjAlIaUUpRoFUsyaBZHQKiussRQJol1fZQoaAZoCWgPQwgDBkmfVhEIwJSGlFKUaBVLMmgWR0CorniZnctYdX2UKGgGaAloD0MINuSfGcRHDMCUhpRSlGgVSzJoFkdAqK4/MINVinV9lChoBmgJaA9DCNLGEWvxqQDAlIaUUpRoFUsyaBZHQKiuBUUfxMF1fZQoaAZoCWgPQwhX7ZqQ1tgIwJSGlFKUaBVLMmgWR0Cor8yfcvdudX2UKGgGaAloD0MITu/i/bi9/L+UhpRSlGgVSzJoFkdAqK+SeK8+R3V9lChoBmgJaA9DCDvgumJGmBbAlIaUUpRoFUsyaBZHQKivWSK3uu11fZQoaAZoCWgPQwiZfol46zwBwJSGlFKUaBVLMmgWR0Corx8U21lYdX2UKGgGaAloD0MIQj9Tr1tkAcCUhpRSlGgVSzJoFkdAqLDkOkLx7XV9lChoBmgJaA9DCKMBvAUSVAXAlIaUUpRoFUsyaBZHQKiwqiosI3R1fZQoaAZoCWgPQwjZPuQtV/8EwJSGlFKUaBVLMmgWR0CosHC66J66dX2UKGgGaAloD0MIibMiaqLPA8CUhpRSlGgVSzJoFkdAqLA23pfQbHV9lChoBmgJaA9DCJgXYB+d+v2/lIaUUpRoFUsyaBZHQKiyAOS4e911fZQoaAZoCWgPQwibdFsiF/wHwJSGlFKUaBVLMmgWR0CoscbZvkzXdX2UKGgGaAloD0MIE0azsn1IAcCUhpRSlGgVSzJoFkdAqLGNcOby6XV9lChoBmgJaA9DCIC77NedTgfAlIaUUpRoFUsyaBZHQKixU4Otnwp1fZQoaAZoCWgPQwhW0opvKJwRwJSGlFKUaBVLMmgWR0CosyiWVu76dX2UKGgGaAloD0MINq0UArmE/L+UhpRSlGgVSzJoFkdAqLLuZE2HcnV9lChoBmgJaA9DCESF6ubi7/e/lIaUUpRoFUsyaBZHQKiytRYzSCx1fZQoaAZoCWgPQwgju9IyUg8HwJSGlFKUaBVLMmgWR0CosnstkFwDdX2UKGgGaAloD0MIizVc5J6u6b+UhpRSlGgVSzJoFkdAqLRA+r2g4HV9lChoBmgJaA9DCI3TEFX4MwDAlIaUUpRoFUsyaBZHQKi0BrLQokR1fZQoaAZoCWgPQwjNdRppqVwIwJSGlFKUaBVLMmgWR0Cos80u+RHPdX2UKGgGaAloD0MI1LZhFAQvAMCUhpRSlGgVSzJoFkdAqLOTgTAWSHV9lChoBmgJaA9DCHejj/mAoATAlIaUUpRoFUsyaBZHQKi1ar/82rJ1fZQoaAZoCWgPQwinBprPudv9v5SGlFKUaBVLMmgWR0CotTCfg75mdX2UKGgGaAloD0MIXJGYoIbPAMCUhpRSlGgVSzJoFkdAqLT3GlyimHV9lChoBmgJaA9DCEiJXdvbrfe/lIaUUpRoFUsyaBZHQKi0vTgEU0x1fZQoaAZoCWgPQwi8zob8MwP7v5SGlFKUaBVLMmgWR0CotpCpNsWPdX2UKGgGaAloD0MI6gYKvJPPBMCUhpRSlGgVSzJoFkdAqLZWlGgBcXV9lChoBmgJaA9DCAA49uy5rADAlIaUUpRoFUsyaBZHQKi2HSm65G11fZQoaAZoCWgPQwgVysLX11oKwJSGlFKUaBVLMmgWR0CoteMwtapxdX2UKGgGaAloD0MI+YbCZ+tABsCUhpRSlGgVSzJoFkdAqLexF3IMjXV9lChoBmgJaA9DCPD7Ny9OHAPAlIaUUpRoFUsyaBZHQKi3dx8UmD11fZQoaAZoCWgPQwglA0AVN44HwJSGlFKUaBVLMmgWR0Cotz2qtHQQdX2UKGgGaAloD0MIDi2yne9nCsCUhpRSlGgVSzJoFkdAqLcDxb0OE3V9lChoBmgJaA9DCLGmsijsog7AlIaUUpRoFUsyaBZHQKi4w5IYm9h1fZQoaAZoCWgPQwibdFsiFxwDwJSGlFKUaBVLMmgWR0CouImTkhicdX2UKGgGaAloD0MI5lsf1hvVBcCUhpRSlGgVSzJoFkdAqLhP4yoGZHV9lChoBmgJaA9DCC+kw0MYv/2/lIaUUpRoFUsyaBZHQKi4Fd/rjYJ1fZQoaAZoCWgPQwj+Rjtu+N3yv5SGlFKUaBVLMmgWR0CoufuIhyKfdX2UKGgGaAloD0MIhGIraFqi97+UhpRSlGgVSzJoFkdAqLnBYLb5/XV9lChoBmgJaA9DCLMj1Xd+0fC/lIaUUpRoFUsyaBZHQKi5h+Kjzqd1fZQoaAZoCWgPQwg0Tdh+Msbqv5SGlFKUaBVLMmgWR0CouU38O09hdX2UKGgGaAloD0MIfsSvWMPlCcCUhpRSlGgVSzJoFkdAqLsTByjpLXV9lChoBmgJaA9DCLG/7J487Pa/lIaUUpRoFUsyaBZHQKi62PK+zt11fZQoaAZoCWgPQwhrDaX2Ilr5v5SGlFKUaBVLMmgWR0Coup9krf+CdX2UKGgGaAloD0MIyR6hZkjVBcCUhpRSlGgVSzJoFkdAqLpleF+NLnV9lChoBmgJaA9DCPMbJhqkoPO/lIaUUpRoFUsyaBZHQKi8MKqGUOd1fZQoaAZoCWgPQwg5l+Kqsm8AwJSGlFKUaBVLMmgWR0Cou/Z2IO6NdX2UKGgGaAloD0MI2xmmttShAsCUhpRSlGgVSzJoFkdAqLu88PnSv3V9lChoBmgJaA9DCPTeGAKAAwXAlIaUUpRoFUsyaBZHQKi7gwKSgXd1fZQoaAZoCWgPQwh7aB8r+K0DwJSGlFKUaBVLMmgWR0CovUR9PUKBdX2UKGgGaAloD0MIE+8AT1oYDcCUhpRSlGgVSzJoFkdAqL0KX2M85nV9lChoBmgJaA9DCGheDrvvOAXAlIaUUpRoFUsyaBZHQKi80NNJvpB1fZQoaAZoCWgPQwjTpBR0ewn5v5SGlFKUaBVLMmgWR0CovJbfpD/mdX2UKGgGaAloD0MI1xTI7CyaAMCUhpRSlGgVSzJoFkdAqL8JIH1OCXV9lChoBmgJaA9DCDc5fNKJxAfAlIaUUpRoFUsyaBZHQKi+z+uvECN1fZQoaAZoCWgPQwhBZfz7jAv1v5SGlFKUaBVLMmgWR0Covpc2itaIdX2UKGgGaAloD0MIZyrEI/Hy+7+UhpRSlGgVSzJoFkdAqL5d8E3bVXV9lChoBmgJaA9DCPyp8dJNAgDAlIaUUpRoFUsyaBZHQKjAyqYJE6V1fZQoaAZoCWgPQwgZc9cS8gH/v5SGlFKUaBVLMmgWR0CowJEPtlZpdX2UKGgGaAloD0MI+gs9YvQ8AMCUhpRSlGgVSzJoFkdAqMBYVbiZOXV9lChoBmgJaA9DCO9zfLQ4IwDAlIaUUpRoFUsyaBZHQKjAHx4IKMN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (551 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.013621075870469, "std_reward": 0.6030887513430421, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-16T10:16:03.171288"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f83871d6c02e498b5fca6c118dbdd506e3d06f9da6015b0262e9b4264201e346
|
3 |
+
size 2387
|