|
from torch import nn |
|
import torch.nn.functional as F |
|
import torch |
|
from models.util import Hourglass, AntiAliasInterpolation2d, make_coordinate_grid, kp2gaussian |
|
|
|
|
|
class DenseMotionNetwork(nn.Module): |
|
""" |
|
Module that predicting a dense motion from sparse motion representation given by kp_source and kp_driving |
|
""" |
|
|
|
def __init__(self, block_expansion, num_blocks, max_features, num_kp, num_channels, estimate_occlusion_map=False, |
|
scale_factor=1, kp_variance=0.01): |
|
super(DenseMotionNetwork, self).__init__() |
|
self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp + 1) * (num_channels + 1), |
|
max_features=max_features, num_blocks=num_blocks) |
|
|
|
self.mask = nn.Conv2d(self.hourglass.out_filters, num_kp + 1, kernel_size=(7, 7), padding=(3, 3)) |
|
|
|
if estimate_occlusion_map: |
|
self.occlusion = nn.Conv2d(self.hourglass.out_filters, 1, kernel_size=(7, 7), padding=(3, 3)) |
|
else: |
|
self.occlusion = None |
|
|
|
self.num_kp = num_kp |
|
self.scale_factor = scale_factor |
|
self.kp_variance = kp_variance |
|
|
|
if self.scale_factor != 1: |
|
self.down = AntiAliasInterpolation2d(num_channels, self.scale_factor) |
|
|
|
def create_heatmap_representations(self, source_image, kp_driving, kp_source): |
|
""" |
|
Eq 6. in the paper H_k(z) |
|
""" |
|
spatial_size = source_image.shape[2:] |
|
gaussian_driving = kp2gaussian(kp_driving, spatial_size=spatial_size, kp_variance=self.kp_variance) |
|
gaussian_source = kp2gaussian(kp_source, spatial_size=spatial_size, kp_variance=self.kp_variance) |
|
heatmap = gaussian_driving - gaussian_source |
|
|
|
|
|
zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1]).type(heatmap.type()) |
|
heatmap = torch.cat([zeros, heatmap], dim=1) |
|
heatmap = heatmap.unsqueeze(2) |
|
return heatmap |
|
|
|
def create_sparse_motions(self, source_image, kp_driving, kp_source): |
|
""" |
|
Eq 4. in the paper T_{s<-d}(z) |
|
""" |
|
bs, _, h, w = source_image.shape |
|
identity_grid = make_coordinate_grid((h, w), type=kp_source['value'].type()) |
|
identity_grid = identity_grid.view(1, 1, h, w, 2) |
|
coordinate_grid = identity_grid - kp_driving['value'].view(bs, self.num_kp, 1, 1, 2) |
|
if 'jacobian' in kp_driving: |
|
jacobian = torch.matmul(kp_source['jacobian'], torch.inverse(kp_driving['jacobian'])) |
|
jacobian = jacobian.unsqueeze(-3).unsqueeze(-3) |
|
jacobian = jacobian.repeat(1, 1, h, w, 1, 1) |
|
coordinate_grid = torch.matmul(jacobian, coordinate_grid.unsqueeze(-1)) |
|
coordinate_grid = coordinate_grid.squeeze(-1) |
|
|
|
driving_to_source = coordinate_grid + kp_source['value'].view(bs, self.num_kp, 1, 1, 2) |
|
|
|
|
|
identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1) |
|
sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1) |
|
return sparse_motions |
|
|
|
def create_deformed_source_image(self, source_image, sparse_motions): |
|
""" |
|
Eq 7. in the paper \hat{T}_{s<-d}(z) |
|
""" |
|
bs, _, h, w = source_image.shape |
|
source_repeat = source_image.unsqueeze(1).unsqueeze(1).repeat(1, self.num_kp + 1, 1, 1, 1, 1) |
|
source_repeat = source_repeat.view(bs * (self.num_kp + 1), -1, h, w) |
|
sparse_motions = sparse_motions.view((bs * (self.num_kp + 1), h, w, -1)) |
|
sparse_deformed = F.grid_sample(source_repeat, sparse_motions) |
|
|
|
sparse_deformed = sparse_deformed.view((bs, self.num_kp + 1, -1, h, w)) |
|
return sparse_deformed |
|
|
|
def forward(self, source_image, kp_driving, kp_source): |
|
if self.scale_factor != 1: |
|
source_image = self.down(source_image) |
|
|
|
bs, _, h, w = source_image.shape |
|
|
|
out_dict = dict() |
|
heatmap_representation = self.create_heatmap_representations(source_image, kp_driving, kp_source) |
|
sparse_motion = self.create_sparse_motions(source_image, kp_driving, kp_source) |
|
deformed_source = self.create_deformed_source_image(source_image, sparse_motion) |
|
out_dict['sparse_deformed'] = deformed_source |
|
|
|
input = torch.cat([heatmap_representation, deformed_source], dim=2) |
|
input = input.view(bs, -1, h, w) |
|
|
|
prediction = self.hourglass(input) |
|
|
|
mask = self.mask(prediction) |
|
mask = F.softmax(mask, dim=1) |
|
out_dict['mask'] = mask |
|
mask = mask.unsqueeze(2) |
|
sparse_motion = sparse_motion.permute(0, 1, 4, 2, 3) |
|
deformation = (sparse_motion * mask).sum(dim=1) |
|
deformation = deformation.permute(0, 2, 3, 1) |
|
|
|
out_dict['deformation'] = deformation |
|
|
|
|
|
if self.occlusion: |
|
occlusion_map = torch.sigmoid(self.occlusion(prediction)) |
|
out_dict['occlusion_map'] = occlusion_map |
|
|
|
return out_dict |
|
|