import torch from torch import nn import torch.nn.functional as F from models.util import ResBlock2d, SameBlock2d, UpBlock2d, DownBlock2d from models.dense_motion import DenseMotionNetwork class OcclusionAwareGenerator(nn.Module): """ Generator that given source image and and keypoints try to transform image according to movement trajectories induced by keypoints. Generator follows Johnson architecture. """ def __init__(self, num_channels, num_kp, block_expansion, max_features, num_down_blocks, num_bottleneck_blocks, estimate_occlusion_map=False, dense_motion_params=None, estimate_jacobian=False): super(OcclusionAwareGenerator, self).__init__() if dense_motion_params is not None: self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, num_channels=num_channels, estimate_occlusion_map=estimate_occlusion_map, **dense_motion_params) else: self.dense_motion_network = None self.first = SameBlock2d(num_channels, block_expansion, kernel_size=(7, 7), padding=(3, 3)) down_blocks = [] for i in range(num_down_blocks): in_features = min(max_features, block_expansion * (2 ** i)) out_features = min(max_features, block_expansion * (2 ** (i + 1))) down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) self.down_blocks = nn.ModuleList(down_blocks) up_blocks = [] for i in range(num_down_blocks): in_features = min(max_features, block_expansion * (2 ** (num_down_blocks - i))) out_features = min(max_features, block_expansion * (2 ** (num_down_blocks - i - 1))) up_blocks.append(UpBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) self.up_blocks = nn.ModuleList(up_blocks) self.bottleneck = torch.nn.Sequential() in_features = min(max_features, block_expansion * (2 ** num_down_blocks)) for i in range(num_bottleneck_blocks): self.bottleneck.add_module('r' + str(i), ResBlock2d(in_features, kernel_size=(3, 3), padding=(1, 1))) self.final = nn.Conv2d(block_expansion, num_channels, kernel_size=(7, 7), padding=(3, 3)) self.estimate_occlusion_map = estimate_occlusion_map self.num_channels = num_channels def deform_input(self, inp, deformation): _, h_old, w_old, _ = deformation.shape _, _, h, w = inp.shape if h_old != h or w_old != w: deformation = deformation.permute(0, 3, 1, 2) deformation = F.interpolate(deformation, size=(h, w), mode='bilinear') deformation = deformation.permute(0, 2, 3, 1) return F.grid_sample(inp, deformation) # return F.grid_sample(inp, deformation,align_corners = False) def forward(self, source_image, kp_driving, kp_source): # Encoding (downsampling) part out = self.first(source_image) for i in range(len(self.down_blocks)): out = self.down_blocks[i](out) # Transforming feature representation according to deformation and occlusion output_dict = {} if self.dense_motion_network is not None: dense_motion = self.dense_motion_network(source_image=source_image, kp_driving=kp_driving, kp_source=kp_source) output_dict['mask'] = dense_motion['mask'] output_dict['sparse_deformed'] = dense_motion['sparse_deformed'] output_dict['deformation'] = dense_motion['deformation'] if 'occlusion_map' in dense_motion: occlusion_map = dense_motion['occlusion_map'] output_dict['occlusion_map'] = occlusion_map else: occlusion_map = None deformation = dense_motion['deformation'] out = self.deform_input(out, deformation) if occlusion_map is not None: if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]: occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear') out = out * occlusion_map output_dict["deformed"] = self.deform_input(source_image, deformation) # Decoding part out = self.bottleneck(out) for i in range(len(self.up_blocks)): out = self.up_blocks[i](out) out = self.final(out) out = F.sigmoid(out) output_dict["prediction"] = out return output_dict