Doctor-Shotgun commited on
Commit
15e6f3e
1 Parent(s): 99a6a6d

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: volume/limarp-70b-qlora
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
14
+ <details><summary>See axolotl config</summary>
15
+
16
+ axolotl version: `0.4.0`
17
+ ```yaml
18
+ base_model: models/miqu-1-70b-sf
19
+ model_type: LlamaForCausalLM
20
+ tokenizer_type: LlamaTokenizer
21
+ is_llama_derived_model: true
22
+
23
+ load_in_8bit: false
24
+ load_in_4bit: true
25
+ strict: false
26
+
27
+ datasets:
28
+ - path: train-all-max-alpaca-llama.jsonl
29
+ type: completion
30
+ dataset_prepared_path:
31
+ val_set_size: 0.0
32
+ output_dir: ./volume/limarp-70b-qlora
33
+
34
+ adapter: qlora
35
+ lora_model_dir:
36
+
37
+ sequence_len: 16384
38
+ sample_packing: true
39
+ pad_to_sequence_len: true
40
+
41
+ lora_r: 32
42
+ lora_alpha: 16
43
+ lora_dropout: 0.05
44
+ lora_target_modules:
45
+ lora_target_linear: true
46
+ lora_fan_in_fan_out:
47
+
48
+ wandb_project: 70b-lora
49
+ wandb_entity:
50
+ wandb_watch:
51
+ wandb_name:
52
+ wandb_log_model:
53
+
54
+ gradient_accumulation_steps: 4
55
+ micro_batch_size: 1
56
+ num_epochs: 2
57
+ optimizer: adamw_bnb_8bit
58
+ lr_scheduler: cosine
59
+ learning_rate: 0.0001
60
+
61
+ train_on_inputs: true
62
+ group_by_length: false
63
+ bf16: true
64
+ fp16: false
65
+ tf32: true
66
+
67
+ gradient_checkpointing: true
68
+ gradient_checkpointing_kwargs:
69
+ use_reentrant: true
70
+ early_stopping_patience:
71
+ resume_from_checkpoint:
72
+ local_rank:
73
+ logging_steps: 1
74
+ xformers_attention:
75
+ flash_attention: true
76
+
77
+ warmup_steps: 10
78
+ eval_steps:
79
+ eval_table_size:
80
+ save_steps:
81
+ debug:
82
+ deepspeed:
83
+ weight_decay: 0.0
84
+ fsdp:
85
+ fsdp_config:
86
+ special_tokens:
87
+ bos_token: "<s>"
88
+ eos_token: "</s>"
89
+ unk_token: "<unk>"
90
+
91
+ ```
92
+
93
+ </details><br>
94
+
95
+ # volume/limarp-70b-qlora
96
+
97
+ This model was trained from scratch on the None dataset.
98
+
99
+ ## Model description
100
+
101
+ More information needed
102
+
103
+ ## Intended uses & limitations
104
+
105
+ More information needed
106
+
107
+ ## Training and evaluation data
108
+
109
+ More information needed
110
+
111
+ ## Training procedure
112
+
113
+ ### Training hyperparameters
114
+
115
+ The following hyperparameters were used during training:
116
+ - learning_rate: 0.0001
117
+ - train_batch_size: 1
118
+ - eval_batch_size: 1
119
+ - seed: 42
120
+ - gradient_accumulation_steps: 4
121
+ - total_train_batch_size: 4
122
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
123
+ - lr_scheduler_type: cosine
124
+ - lr_scheduler_warmup_steps: 10
125
+ - num_epochs: 2
126
+
127
+ ### Training results
128
+
129
+
130
+
131
+ ### Framework versions
132
+
133
+ - PEFT 0.7.2.dev0
134
+ - Transformers 4.37.0
135
+ - Pytorch 2.1.2+cu118
136
+ - Datasets 2.16.1
137
+ - Tokenizers 0.15.0
adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "models/miqu-1-70b-sf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "up_proj",
23
+ "v_proj",
24
+ "down_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "q_proj",
28
+ "o_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dceb80d1e7f9a1bc2c49a2be6073bb284b680f9a074f73f662a4ab7bd4cf367b
3
+ size 1657155202
checkpoint-169/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: models/miqu-1-70b-sf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.2.dev0
checkpoint-169/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "models/miqu-1-70b-sf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "up_proj",
23
+ "v_proj",
24
+ "down_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "q_proj",
28
+ "o_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
checkpoint-169/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4033f04ee0a34017f8b1dba72e38a3e644e22c3764beb368ea077f8b1626673
3
+ size 1656902648
checkpoint-169/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d72b0e0941488683421f5371635c5ffcb035ce6099e55cf1d9fcdd290725817
3
+ size 831305300
checkpoint-169/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f92a69bdd4b0dbba88379df9544068d377fbbf9b2f7bd75ec7953d5cc0f4377
3
+ size 14244
checkpoint-169/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37ba009646cdc3da3968e4818e396351d8fd70d5c95ae79461d7c8052763d65d
3
+ size 1064
checkpoint-169/trainer_state.json ADDED
@@ -0,0 +1,1035 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.027355623100304,
5
+ "eval_steps": 500,
6
+ "global_step": 169,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 1e-05,
14
+ "loss": 1.897,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 2e-05,
20
+ "loss": 1.9202,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 3e-05,
26
+ "loss": 1.9071,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.02,
31
+ "learning_rate": 4e-05,
32
+ "loss": 1.9712,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 5e-05,
38
+ "loss": 2.0125,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.04,
43
+ "learning_rate": 6e-05,
44
+ "loss": 1.8839,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "learning_rate": 7e-05,
50
+ "loss": 1.9586,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "learning_rate": 8e-05,
56
+ "loss": 1.9625,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.05,
61
+ "learning_rate": 9e-05,
62
+ "loss": 1.9269,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.06,
67
+ "learning_rate": 0.0001,
68
+ "loss": 1.9005,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.07,
73
+ "learning_rate": 9.999756004407229e-05,
74
+ "loss": 1.857,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.07,
79
+ "learning_rate": 9.999024041442456e-05,
80
+ "loss": 1.9072,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 9.997804182543973e-05,
86
+ "loss": 1.7945,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 9.99609654676786e-05,
92
+ "loss": 1.8496,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.09,
97
+ "learning_rate": 9.993901300776359e-05,
98
+ "loss": 1.8275,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 9.991218658821608e-05,
104
+ "loss": 1.8701,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.1,
109
+ "learning_rate": 9.988048882724732e-05,
110
+ "loss": 1.8594,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.11,
115
+ "learning_rate": 9.984392281850293e-05,
116
+ "loss": 1.8669,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.12,
121
+ "learning_rate": 9.980249213076084e-05,
122
+ "loss": 1.8022,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.12,
127
+ "learning_rate": 9.97562008075832e-05,
128
+ "loss": 1.8139,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.13,
133
+ "learning_rate": 9.970505336692153e-05,
134
+ "loss": 1.8775,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.13,
139
+ "learning_rate": 9.964905480067586e-05,
140
+ "loss": 1.7862,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.14,
145
+ "learning_rate": 9.958821057420754e-05,
146
+ "loss": 1.8414,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.15,
151
+ "learning_rate": 9.952252662580579e-05,
152
+ "loss": 1.7446,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.15,
157
+ "learning_rate": 9.94520093661082e-05,
158
+ "loss": 1.8705,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.16,
163
+ "learning_rate": 9.937666567747501e-05,
164
+ "loss": 1.822,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.16,
169
+ "learning_rate": 9.92965029133174e-05,
170
+ "loss": 1.9357,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.17,
175
+ "learning_rate": 9.921152889737984e-05,
176
+ "loss": 1.7958,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "learning_rate": 9.912175192297648e-05,
182
+ "loss": 1.7557,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.18,
187
+ "learning_rate": 9.902718075218176e-05,
188
+ "loss": 1.8138,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.19,
193
+ "learning_rate": 9.89278246149752e-05,
194
+ "loss": 1.7865,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.19,
199
+ "learning_rate": 9.882369320834069e-05,
200
+ "loss": 1.7997,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.2,
205
+ "learning_rate": 9.87147966953199e-05,
206
+ "loss": 1.7534,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.21,
211
+ "learning_rate": 9.860114570402054e-05,
212
+ "loss": 1.7092,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.21,
217
+ "learning_rate": 9.848275132657903e-05,
218
+ "loss": 1.7261,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.22,
223
+ "learning_rate": 9.835962511807786e-05,
224
+ "loss": 1.7827,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.22,
229
+ "learning_rate": 9.823177909541794e-05,
230
+ "loss": 1.7948,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.23,
235
+ "learning_rate": 9.809922573614569e-05,
236
+ "loss": 1.8275,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.24,
241
+ "learning_rate": 9.796197797723532e-05,
242
+ "loss": 1.7533,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.24,
247
+ "learning_rate": 9.782004921382612e-05,
248
+ "loss": 1.7555,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.25,
253
+ "learning_rate": 9.767345329791522e-05,
254
+ "loss": 1.8018,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.26,
259
+ "learning_rate": 9.752220453700556e-05,
260
+ "loss": 1.8107,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.26,
265
+ "learning_rate": 9.736631769270957e-05,
266
+ "loss": 1.7941,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.27,
271
+ "learning_rate": 9.720580797930845e-05,
272
+ "loss": 1.8829,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.27,
277
+ "learning_rate": 9.704069106226727e-05,
278
+ "loss": 1.8041,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.28,
283
+ "learning_rate": 9.687098305670605e-05,
284
+ "loss": 1.77,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.29,
289
+ "learning_rate": 9.669670052582695e-05,
290
+ "loss": 1.7547,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.29,
295
+ "learning_rate": 9.651786047929773e-05,
296
+ "loss": 1.7594,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.3,
301
+ "learning_rate": 9.633448037159167e-05,
302
+ "loss": 1.7076,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.3,
307
+ "learning_rate": 9.614657810028402e-05,
308
+ "loss": 1.786,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.31,
313
+ "learning_rate": 9.595417200430516e-05,
314
+ "loss": 1.7076,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.32,
319
+ "learning_rate": 9.575728086215092e-05,
320
+ "loss": 1.7508,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.32,
325
+ "learning_rate": 9.555592389004966e-05,
326
+ "loss": 1.7979,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.33,
331
+ "learning_rate": 9.535012074008687e-05,
332
+ "loss": 1.7075,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.33,
337
+ "learning_rate": 9.513989149828718e-05,
338
+ "loss": 1.7828,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.34,
343
+ "learning_rate": 9.492525668265399e-05,
344
+ "loss": 1.8179,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.35,
349
+ "learning_rate": 9.470623724116692e-05,
350
+ "loss": 1.7802,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.35,
355
+ "learning_rate": 9.448285454973738e-05,
356
+ "loss": 1.7873,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.36,
361
+ "learning_rate": 9.425513041012219e-05,
362
+ "loss": 1.7315,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.36,
367
+ "learning_rate": 9.402308704779599e-05,
368
+ "loss": 1.7953,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.37,
373
+ "learning_rate": 9.378674710978185e-05,
374
+ "loss": 1.7946,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.38,
379
+ "learning_rate": 9.354613366244108e-05,
380
+ "loss": 1.7543,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.38,
385
+ "learning_rate": 9.330127018922194e-05,
386
+ "loss": 1.7302,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.39,
391
+ "learning_rate": 9.305218058836778e-05,
392
+ "loss": 1.8224,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.4,
397
+ "learning_rate": 9.279888917058452e-05,
398
+ "loss": 1.757,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.4,
403
+ "learning_rate": 9.254142065666801e-05,
404
+ "loss": 1.7506,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.41,
409
+ "learning_rate": 9.22798001750913e-05,
410
+ "loss": 1.7523,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.41,
415
+ "learning_rate": 9.201405325955221e-05,
416
+ "loss": 1.7923,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.42,
421
+ "learning_rate": 9.174420584648123e-05,
422
+ "loss": 1.7417,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.43,
427
+ "learning_rate": 9.14702842725101e-05,
428
+ "loss": 1.8008,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.43,
433
+ "learning_rate": 9.119231527190158e-05,
434
+ "loss": 1.7204,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.44,
439
+ "learning_rate": 9.091032597394012e-05,
440
+ "loss": 1.7863,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.44,
445
+ "learning_rate": 9.062434390028407e-05,
446
+ "loss": 1.7512,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.45,
451
+ "learning_rate": 9.033439696227965e-05,
452
+ "loss": 1.8159,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.46,
457
+ "learning_rate": 9.004051345823689e-05,
458
+ "loss": 1.7654,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.46,
463
+ "learning_rate": 8.974272207066767e-05,
464
+ "loss": 1.712,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.47,
469
+ "learning_rate": 8.944105186348646e-05,
470
+ "loss": 1.7975,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.47,
475
+ "learning_rate": 8.913553227917367e-05,
476
+ "loss": 1.7364,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.48,
481
+ "learning_rate": 8.882619313590212e-05,
482
+ "loss": 1.7615,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.49,
487
+ "learning_rate": 8.851306462462688e-05,
488
+ "loss": 1.6968,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.49,
493
+ "learning_rate": 8.819617730613862e-05,
494
+ "loss": 1.7455,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.5,
499
+ "learning_rate": 8.787556210808101e-05,
500
+ "loss": 1.8118,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.5,
505
+ "learning_rate": 8.755125032193214e-05,
506
+ "loss": 1.7766,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.51,
511
+ "learning_rate": 8.722327359995064e-05,
512
+ "loss": 1.7388,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.52,
517
+ "learning_rate": 8.689166395208636e-05,
518
+ "loss": 1.6951,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.52,
523
+ "learning_rate": 8.655645374285637e-05,
524
+ "loss": 1.8524,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.53,
529
+ "learning_rate": 8.621767568818613e-05,
530
+ "loss": 1.8439,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.53,
535
+ "learning_rate": 8.587536285221656e-05,
536
+ "loss": 1.7917,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.54,
541
+ "learning_rate": 8.552954864407699e-05,
542
+ "loss": 1.7381,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.55,
547
+ "learning_rate": 8.518026681462448e-05,
548
+ "loss": 1.7198,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.55,
553
+ "learning_rate": 8.482755145314986e-05,
554
+ "loss": 1.7388,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.56,
559
+ "learning_rate": 8.44714369840506e-05,
560
+ "loss": 1.7147,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.57,
565
+ "learning_rate": 8.41119581634711e-05,
566
+ "loss": 1.7247,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.57,
571
+ "learning_rate": 8.374915007591053e-05,
572
+ "loss": 1.7975,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.58,
577
+ "learning_rate": 8.338304813079865e-05,
578
+ "loss": 1.6963,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.58,
583
+ "learning_rate": 8.301368805903988e-05,
584
+ "loss": 1.7466,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.59,
589
+ "learning_rate": 8.264110590952609e-05,
590
+ "loss": 1.8162,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.6,
595
+ "learning_rate": 8.226533804561827e-05,
596
+ "loss": 1.8318,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.6,
601
+ "learning_rate": 8.188642114159747e-05,
602
+ "loss": 1.8107,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.61,
607
+ "learning_rate": 8.150439217908556e-05,
608
+ "loss": 1.7286,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.61,
613
+ "learning_rate": 8.11192884434358e-05,
614
+ "loss": 1.8096,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.62,
619
+ "learning_rate": 8.073114752009387e-05,
620
+ "loss": 1.7905,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.63,
625
+ "learning_rate": 8.034000729092968e-05,
626
+ "loss": 1.8094,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.63,
631
+ "learning_rate": 7.994590593054001e-05,
632
+ "loss": 1.7906,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.64,
637
+ "learning_rate": 7.954888190252292e-05,
638
+ "loss": 1.8019,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.64,
643
+ "learning_rate": 7.91489739557236e-05,
644
+ "loss": 1.7756,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.65,
649
+ "learning_rate": 7.874622112045269e-05,
650
+ "loss": 1.7668,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.66,
655
+ "learning_rate": 7.83406627046769e-05,
656
+ "loss": 1.7509,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.66,
661
+ "learning_rate": 7.793233829018262e-05,
662
+ "loss": 1.8472,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.67,
667
+ "learning_rate": 7.752128772871292e-05,
668
+ "loss": 1.7917,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.67,
673
+ "learning_rate": 7.710755113807794e-05,
674
+ "loss": 1.7408,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.68,
679
+ "learning_rate": 7.669116889823955e-05,
680
+ "loss": 1.6748,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.69,
685
+ "learning_rate": 7.627218164737031e-05,
686
+ "loss": 1.8016,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.69,
691
+ "learning_rate": 7.585063027788731e-05,
692
+ "loss": 1.7302,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.7,
697
+ "learning_rate": 7.542655593246103e-05,
698
+ "loss": 1.735,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.71,
703
+ "learning_rate": 7.500000000000001e-05,
704
+ "loss": 1.777,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.71,
709
+ "learning_rate": 7.457100411161128e-05,
710
+ "loss": 1.7049,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.72,
715
+ "learning_rate": 7.413961013653726e-05,
716
+ "loss": 1.826,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.72,
721
+ "learning_rate": 7.370586017806942e-05,
722
+ "loss": 1.7539,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.73,
727
+ "learning_rate": 7.326979656943906e-05,
728
+ "loss": 1.6597,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.74,
733
+ "learning_rate": 7.283146186968565e-05,
734
+ "loss": 1.7977,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.74,
739
+ "learning_rate": 7.239089885950316e-05,
740
+ "loss": 1.7501,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.75,
745
+ "learning_rate": 7.19481505370647e-05,
746
+ "loss": 1.7521,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.75,
751
+ "learning_rate": 7.150326011382604e-05,
752
+ "loss": 1.7778,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.76,
757
+ "learning_rate": 7.105627101030817e-05,
758
+ "loss": 1.7793,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.77,
763
+ "learning_rate": 7.060722685185961e-05,
764
+ "loss": 1.8148,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.77,
769
+ "learning_rate": 7.015617146439863e-05,
770
+ "loss": 1.7838,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.78,
775
+ "learning_rate": 6.970314887013584e-05,
776
+ "loss": 1.796,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.78,
781
+ "learning_rate": 6.924820328327786e-05,
782
+ "loss": 1.832,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.79,
787
+ "learning_rate": 6.879137910571191e-05,
788
+ "loss": 1.7494,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.8,
793
+ "learning_rate": 6.833272092267241e-05,
794
+ "loss": 1.7762,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.8,
799
+ "learning_rate": 6.787227349838947e-05,
800
+ "loss": 1.7136,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.81,
805
+ "learning_rate": 6.741008177171995e-05,
806
+ "loss": 1.7987,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.81,
811
+ "learning_rate": 6.694619085176159e-05,
812
+ "loss": 1.7855,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.82,
817
+ "learning_rate": 6.64806460134504e-05,
818
+ "loss": 1.801,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.83,
823
+ "learning_rate": 6.601349269314188e-05,
824
+ "loss": 1.6862,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.83,
829
+ "learning_rate": 6.554477648417657e-05,
830
+ "loss": 1.7124,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.84,
835
+ "learning_rate": 6.507454313243015e-05,
836
+ "loss": 1.7362,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.84,
841
+ "learning_rate": 6.460283853184879e-05,
842
+ "loss": 1.6903,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.85,
847
+ "learning_rate": 6.412970871996995e-05,
848
+ "loss": 1.7153,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.86,
853
+ "learning_rate": 6.365519987342917e-05,
854
+ "loss": 1.7335,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.86,
859
+ "learning_rate": 6.317935830345338e-05,
860
+ "loss": 1.7567,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.87,
865
+ "learning_rate": 6.270223045134096e-05,
866
+ "loss": 1.7885,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.88,
871
+ "learning_rate": 6.222386288392913e-05,
872
+ "loss": 1.8316,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.88,
877
+ "learning_rate": 6.174430228904919e-05,
878
+ "loss": 1.7411,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.89,
883
+ "learning_rate": 6.126359547096975e-05,
884
+ "loss": 1.7384,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.89,
889
+ "learning_rate": 6.078178934582885e-05,
890
+ "loss": 1.7717,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.9,
895
+ "learning_rate": 6.029893093705492e-05,
896
+ "loss": 1.7984,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.91,
901
+ "learning_rate": 5.981506737077744e-05,
902
+ "loss": 1.7875,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.91,
907
+ "learning_rate": 5.9330245871227454e-05,
908
+ "loss": 1.762,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.92,
913
+ "learning_rate": 5.884451375612865e-05,
914
+ "loss": 1.7517,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.92,
919
+ "learning_rate": 5.835791843207916e-05,
920
+ "loss": 1.7745,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.93,
925
+ "learning_rate": 5.787050738992482e-05,
926
+ "loss": 1.6965,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.94,
931
+ "learning_rate": 5.738232820012407e-05,
932
+ "loss": 1.7892,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.94,
937
+ "learning_rate": 5.6893428508105225e-05,
938
+ "loss": 1.7803,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.95,
943
+ "learning_rate": 5.640385602961634e-05,
944
+ "loss": 1.7592,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.95,
949
+ "learning_rate": 5.5913658546068295e-05,
950
+ "loss": 1.8219,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.96,
955
+ "learning_rate": 5.5422883899871284e-05,
956
+ "loss": 1.8626,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.97,
961
+ "learning_rate": 5.493157998976559e-05,
962
+ "loss": 1.7252,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.97,
967
+ "learning_rate": 5.4439794766146746e-05,
968
+ "loss": 1.6911,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.98,
973
+ "learning_rate": 5.39475762263856e-05,
974
+ "loss": 1.8046,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.98,
979
+ "learning_rate": 5.34549724101439e-05,
980
+ "loss": 1.7559,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.99,
985
+ "learning_rate": 5.296203139468572e-05,
986
+ "loss": 1.8943,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 1.0,
991
+ "learning_rate": 5.246880129018516e-05,
992
+ "loss": 1.7772,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 1.0,
997
+ "learning_rate": 5.197533023503089e-05,
998
+ "loss": 1.7057,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 1.01,
1003
+ "learning_rate": 5.148166639112799e-05,
1004
+ "loss": 1.6976,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 1.02,
1009
+ "learning_rate": 5.0987857939197324e-05,
1010
+ "loss": 1.8151,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 1.02,
1015
+ "learning_rate": 5.049395307407329e-05,
1016
+ "loss": 1.7286,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 1.03,
1021
+ "learning_rate": 5e-05,
1022
+ "loss": 1.782,
1023
+ "step": 169
1024
+ }
1025
+ ],
1026
+ "logging_steps": 1,
1027
+ "max_steps": 328,
1028
+ "num_input_tokens_seen": 0,
1029
+ "num_train_epochs": 2,
1030
+ "save_steps": 500,
1031
+ "total_flos": 4.6006394181082153e+18,
1032
+ "train_batch_size": 1,
1033
+ "trial_name": null,
1034
+ "trial_params": null
1035
+ }
checkpoint-169/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39e60f1b5d15ced53a534111f26d4623440cc37c60600828e28ffd0da0da5e62
3
+ size 5304
checkpoint-328/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: models/miqu-1-70b-sf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.2.dev0
checkpoint-328/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "models/miqu-1-70b-sf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "up_proj",
23
+ "v_proj",
24
+ "down_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "q_proj",
28
+ "o_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
checkpoint-328/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4564e5b9c673d71626cfd1822a01639bb7359a1ed537becbef35bfbfac90b613
3
+ size 1656902648
checkpoint-328/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff90a73d43c6abb8f89d90fcb9c7acfd2180b605f739b48056dca99d41f8df79
3
+ size 831306452
checkpoint-328/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8e0cce9ee681ee5c91cb6a1979f57530007510c951aa6c3e01374d32de1b2c2
3
+ size 14244
checkpoint-328/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60b1ee8834e6374947ee9f2cbba00e5ade3da0b80a085340ffa41a1a2d87a5d6
3
+ size 1064
checkpoint-328/trainer_state.json ADDED
@@ -0,0 +1,1989 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.965045592705167,
5
+ "eval_steps": 500,
6
+ "global_step": 328,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 1e-05,
14
+ "loss": 1.897,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 2e-05,
20
+ "loss": 1.9202,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 3e-05,
26
+ "loss": 1.9071,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.02,
31
+ "learning_rate": 4e-05,
32
+ "loss": 1.9712,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 5e-05,
38
+ "loss": 2.0125,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.04,
43
+ "learning_rate": 6e-05,
44
+ "loss": 1.8839,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "learning_rate": 7e-05,
50
+ "loss": 1.9586,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "learning_rate": 8e-05,
56
+ "loss": 1.9625,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.05,
61
+ "learning_rate": 9e-05,
62
+ "loss": 1.9269,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.06,
67
+ "learning_rate": 0.0001,
68
+ "loss": 1.9005,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.07,
73
+ "learning_rate": 9.999756004407229e-05,
74
+ "loss": 1.857,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.07,
79
+ "learning_rate": 9.999024041442456e-05,
80
+ "loss": 1.9072,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 9.997804182543973e-05,
86
+ "loss": 1.7945,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 9.99609654676786e-05,
92
+ "loss": 1.8496,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.09,
97
+ "learning_rate": 9.993901300776359e-05,
98
+ "loss": 1.8275,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 9.991218658821608e-05,
104
+ "loss": 1.8701,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.1,
109
+ "learning_rate": 9.988048882724732e-05,
110
+ "loss": 1.8594,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.11,
115
+ "learning_rate": 9.984392281850293e-05,
116
+ "loss": 1.8669,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.12,
121
+ "learning_rate": 9.980249213076084e-05,
122
+ "loss": 1.8022,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.12,
127
+ "learning_rate": 9.97562008075832e-05,
128
+ "loss": 1.8139,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.13,
133
+ "learning_rate": 9.970505336692153e-05,
134
+ "loss": 1.8775,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.13,
139
+ "learning_rate": 9.964905480067586e-05,
140
+ "loss": 1.7862,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.14,
145
+ "learning_rate": 9.958821057420754e-05,
146
+ "loss": 1.8414,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.15,
151
+ "learning_rate": 9.952252662580579e-05,
152
+ "loss": 1.7446,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.15,
157
+ "learning_rate": 9.94520093661082e-05,
158
+ "loss": 1.8705,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.16,
163
+ "learning_rate": 9.937666567747501e-05,
164
+ "loss": 1.822,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.16,
169
+ "learning_rate": 9.92965029133174e-05,
170
+ "loss": 1.9357,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.17,
175
+ "learning_rate": 9.921152889737984e-05,
176
+ "loss": 1.7958,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "learning_rate": 9.912175192297648e-05,
182
+ "loss": 1.7557,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.18,
187
+ "learning_rate": 9.902718075218176e-05,
188
+ "loss": 1.8138,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.19,
193
+ "learning_rate": 9.89278246149752e-05,
194
+ "loss": 1.7865,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.19,
199
+ "learning_rate": 9.882369320834069e-05,
200
+ "loss": 1.7997,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.2,
205
+ "learning_rate": 9.87147966953199e-05,
206
+ "loss": 1.7534,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.21,
211
+ "learning_rate": 9.860114570402054e-05,
212
+ "loss": 1.7092,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.21,
217
+ "learning_rate": 9.848275132657903e-05,
218
+ "loss": 1.7261,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.22,
223
+ "learning_rate": 9.835962511807786e-05,
224
+ "loss": 1.7827,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.22,
229
+ "learning_rate": 9.823177909541794e-05,
230
+ "loss": 1.7948,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.23,
235
+ "learning_rate": 9.809922573614569e-05,
236
+ "loss": 1.8275,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.24,
241
+ "learning_rate": 9.796197797723532e-05,
242
+ "loss": 1.7533,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.24,
247
+ "learning_rate": 9.782004921382612e-05,
248
+ "loss": 1.7555,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.25,
253
+ "learning_rate": 9.767345329791522e-05,
254
+ "loss": 1.8018,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.26,
259
+ "learning_rate": 9.752220453700556e-05,
260
+ "loss": 1.8107,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.26,
265
+ "learning_rate": 9.736631769270957e-05,
266
+ "loss": 1.7941,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.27,
271
+ "learning_rate": 9.720580797930845e-05,
272
+ "loss": 1.8829,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.27,
277
+ "learning_rate": 9.704069106226727e-05,
278
+ "loss": 1.8041,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.28,
283
+ "learning_rate": 9.687098305670605e-05,
284
+ "loss": 1.77,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.29,
289
+ "learning_rate": 9.669670052582695e-05,
290
+ "loss": 1.7547,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.29,
295
+ "learning_rate": 9.651786047929773e-05,
296
+ "loss": 1.7594,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.3,
301
+ "learning_rate": 9.633448037159167e-05,
302
+ "loss": 1.7076,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.3,
307
+ "learning_rate": 9.614657810028402e-05,
308
+ "loss": 1.786,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.31,
313
+ "learning_rate": 9.595417200430516e-05,
314
+ "loss": 1.7076,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.32,
319
+ "learning_rate": 9.575728086215092e-05,
320
+ "loss": 1.7508,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.32,
325
+ "learning_rate": 9.555592389004966e-05,
326
+ "loss": 1.7979,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.33,
331
+ "learning_rate": 9.535012074008687e-05,
332
+ "loss": 1.7075,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.33,
337
+ "learning_rate": 9.513989149828718e-05,
338
+ "loss": 1.7828,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.34,
343
+ "learning_rate": 9.492525668265399e-05,
344
+ "loss": 1.8179,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.35,
349
+ "learning_rate": 9.470623724116692e-05,
350
+ "loss": 1.7802,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.35,
355
+ "learning_rate": 9.448285454973738e-05,
356
+ "loss": 1.7873,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.36,
361
+ "learning_rate": 9.425513041012219e-05,
362
+ "loss": 1.7315,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.36,
367
+ "learning_rate": 9.402308704779599e-05,
368
+ "loss": 1.7953,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.37,
373
+ "learning_rate": 9.378674710978185e-05,
374
+ "loss": 1.7946,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.38,
379
+ "learning_rate": 9.354613366244108e-05,
380
+ "loss": 1.7543,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.38,
385
+ "learning_rate": 9.330127018922194e-05,
386
+ "loss": 1.7302,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.39,
391
+ "learning_rate": 9.305218058836778e-05,
392
+ "loss": 1.8224,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.4,
397
+ "learning_rate": 9.279888917058452e-05,
398
+ "loss": 1.757,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.4,
403
+ "learning_rate": 9.254142065666801e-05,
404
+ "loss": 1.7506,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.41,
409
+ "learning_rate": 9.22798001750913e-05,
410
+ "loss": 1.7523,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.41,
415
+ "learning_rate": 9.201405325955221e-05,
416
+ "loss": 1.7923,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.42,
421
+ "learning_rate": 9.174420584648123e-05,
422
+ "loss": 1.7417,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.43,
427
+ "learning_rate": 9.14702842725101e-05,
428
+ "loss": 1.8008,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.43,
433
+ "learning_rate": 9.119231527190158e-05,
434
+ "loss": 1.7204,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.44,
439
+ "learning_rate": 9.091032597394012e-05,
440
+ "loss": 1.7863,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.44,
445
+ "learning_rate": 9.062434390028407e-05,
446
+ "loss": 1.7512,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.45,
451
+ "learning_rate": 9.033439696227965e-05,
452
+ "loss": 1.8159,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.46,
457
+ "learning_rate": 9.004051345823689e-05,
458
+ "loss": 1.7654,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.46,
463
+ "learning_rate": 8.974272207066767e-05,
464
+ "loss": 1.712,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.47,
469
+ "learning_rate": 8.944105186348646e-05,
470
+ "loss": 1.7975,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.47,
475
+ "learning_rate": 8.913553227917367e-05,
476
+ "loss": 1.7364,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.48,
481
+ "learning_rate": 8.882619313590212e-05,
482
+ "loss": 1.7615,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.49,
487
+ "learning_rate": 8.851306462462688e-05,
488
+ "loss": 1.6968,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.49,
493
+ "learning_rate": 8.819617730613862e-05,
494
+ "loss": 1.7455,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.5,
499
+ "learning_rate": 8.787556210808101e-05,
500
+ "loss": 1.8118,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.5,
505
+ "learning_rate": 8.755125032193214e-05,
506
+ "loss": 1.7766,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.51,
511
+ "learning_rate": 8.722327359995064e-05,
512
+ "loss": 1.7388,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.52,
517
+ "learning_rate": 8.689166395208636e-05,
518
+ "loss": 1.6951,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.52,
523
+ "learning_rate": 8.655645374285637e-05,
524
+ "loss": 1.8524,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.53,
529
+ "learning_rate": 8.621767568818613e-05,
530
+ "loss": 1.8439,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.53,
535
+ "learning_rate": 8.587536285221656e-05,
536
+ "loss": 1.7917,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.54,
541
+ "learning_rate": 8.552954864407699e-05,
542
+ "loss": 1.7381,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.55,
547
+ "learning_rate": 8.518026681462448e-05,
548
+ "loss": 1.7198,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.55,
553
+ "learning_rate": 8.482755145314986e-05,
554
+ "loss": 1.7388,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.56,
559
+ "learning_rate": 8.44714369840506e-05,
560
+ "loss": 1.7147,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.57,
565
+ "learning_rate": 8.41119581634711e-05,
566
+ "loss": 1.7247,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.57,
571
+ "learning_rate": 8.374915007591053e-05,
572
+ "loss": 1.7975,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.58,
577
+ "learning_rate": 8.338304813079865e-05,
578
+ "loss": 1.6963,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.58,
583
+ "learning_rate": 8.301368805903988e-05,
584
+ "loss": 1.7466,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.59,
589
+ "learning_rate": 8.264110590952609e-05,
590
+ "loss": 1.8162,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.6,
595
+ "learning_rate": 8.226533804561827e-05,
596
+ "loss": 1.8318,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.6,
601
+ "learning_rate": 8.188642114159747e-05,
602
+ "loss": 1.8107,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.61,
607
+ "learning_rate": 8.150439217908556e-05,
608
+ "loss": 1.7286,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.61,
613
+ "learning_rate": 8.11192884434358e-05,
614
+ "loss": 1.8096,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.62,
619
+ "learning_rate": 8.073114752009387e-05,
620
+ "loss": 1.7905,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.63,
625
+ "learning_rate": 8.034000729092968e-05,
626
+ "loss": 1.8094,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.63,
631
+ "learning_rate": 7.994590593054001e-05,
632
+ "loss": 1.7906,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.64,
637
+ "learning_rate": 7.954888190252292e-05,
638
+ "loss": 1.8019,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.64,
643
+ "learning_rate": 7.91489739557236e-05,
644
+ "loss": 1.7756,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.65,
649
+ "learning_rate": 7.874622112045269e-05,
650
+ "loss": 1.7668,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.66,
655
+ "learning_rate": 7.83406627046769e-05,
656
+ "loss": 1.7509,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.66,
661
+ "learning_rate": 7.793233829018262e-05,
662
+ "loss": 1.8472,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.67,
667
+ "learning_rate": 7.752128772871292e-05,
668
+ "loss": 1.7917,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.67,
673
+ "learning_rate": 7.710755113807794e-05,
674
+ "loss": 1.7408,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.68,
679
+ "learning_rate": 7.669116889823955e-05,
680
+ "loss": 1.6748,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.69,
685
+ "learning_rate": 7.627218164737031e-05,
686
+ "loss": 1.8016,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.69,
691
+ "learning_rate": 7.585063027788731e-05,
692
+ "loss": 1.7302,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.7,
697
+ "learning_rate": 7.542655593246103e-05,
698
+ "loss": 1.735,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.71,
703
+ "learning_rate": 7.500000000000001e-05,
704
+ "loss": 1.777,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.71,
709
+ "learning_rate": 7.457100411161128e-05,
710
+ "loss": 1.7049,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.72,
715
+ "learning_rate": 7.413961013653726e-05,
716
+ "loss": 1.826,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.72,
721
+ "learning_rate": 7.370586017806942e-05,
722
+ "loss": 1.7539,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.73,
727
+ "learning_rate": 7.326979656943906e-05,
728
+ "loss": 1.6597,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.74,
733
+ "learning_rate": 7.283146186968565e-05,
734
+ "loss": 1.7977,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.74,
739
+ "learning_rate": 7.239089885950316e-05,
740
+ "loss": 1.7501,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.75,
745
+ "learning_rate": 7.19481505370647e-05,
746
+ "loss": 1.7521,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.75,
751
+ "learning_rate": 7.150326011382604e-05,
752
+ "loss": 1.7778,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.76,
757
+ "learning_rate": 7.105627101030817e-05,
758
+ "loss": 1.7793,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.77,
763
+ "learning_rate": 7.060722685185961e-05,
764
+ "loss": 1.8148,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.77,
769
+ "learning_rate": 7.015617146439863e-05,
770
+ "loss": 1.7838,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.78,
775
+ "learning_rate": 6.970314887013584e-05,
776
+ "loss": 1.796,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.78,
781
+ "learning_rate": 6.924820328327786e-05,
782
+ "loss": 1.832,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.79,
787
+ "learning_rate": 6.879137910571191e-05,
788
+ "loss": 1.7494,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.8,
793
+ "learning_rate": 6.833272092267241e-05,
794
+ "loss": 1.7762,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.8,
799
+ "learning_rate": 6.787227349838947e-05,
800
+ "loss": 1.7136,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.81,
805
+ "learning_rate": 6.741008177171995e-05,
806
+ "loss": 1.7987,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.81,
811
+ "learning_rate": 6.694619085176159e-05,
812
+ "loss": 1.7855,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.82,
817
+ "learning_rate": 6.64806460134504e-05,
818
+ "loss": 1.801,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.83,
823
+ "learning_rate": 6.601349269314188e-05,
824
+ "loss": 1.6862,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.83,
829
+ "learning_rate": 6.554477648417657e-05,
830
+ "loss": 1.7124,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.84,
835
+ "learning_rate": 6.507454313243015e-05,
836
+ "loss": 1.7362,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.84,
841
+ "learning_rate": 6.460283853184879e-05,
842
+ "loss": 1.6903,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.85,
847
+ "learning_rate": 6.412970871996995e-05,
848
+ "loss": 1.7153,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.86,
853
+ "learning_rate": 6.365519987342917e-05,
854
+ "loss": 1.7335,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.86,
859
+ "learning_rate": 6.317935830345338e-05,
860
+ "loss": 1.7567,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.87,
865
+ "learning_rate": 6.270223045134096e-05,
866
+ "loss": 1.7885,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.88,
871
+ "learning_rate": 6.222386288392913e-05,
872
+ "loss": 1.8316,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.88,
877
+ "learning_rate": 6.174430228904919e-05,
878
+ "loss": 1.7411,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.89,
883
+ "learning_rate": 6.126359547096975e-05,
884
+ "loss": 1.7384,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.89,
889
+ "learning_rate": 6.078178934582885e-05,
890
+ "loss": 1.7717,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.9,
895
+ "learning_rate": 6.029893093705492e-05,
896
+ "loss": 1.7984,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.91,
901
+ "learning_rate": 5.981506737077744e-05,
902
+ "loss": 1.7875,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.91,
907
+ "learning_rate": 5.9330245871227454e-05,
908
+ "loss": 1.762,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.92,
913
+ "learning_rate": 5.884451375612865e-05,
914
+ "loss": 1.7517,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.92,
919
+ "learning_rate": 5.835791843207916e-05,
920
+ "loss": 1.7745,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.93,
925
+ "learning_rate": 5.787050738992482e-05,
926
+ "loss": 1.6965,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.94,
931
+ "learning_rate": 5.738232820012407e-05,
932
+ "loss": 1.7892,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.94,
937
+ "learning_rate": 5.6893428508105225e-05,
938
+ "loss": 1.7803,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.95,
943
+ "learning_rate": 5.640385602961634e-05,
944
+ "loss": 1.7592,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.95,
949
+ "learning_rate": 5.5913658546068295e-05,
950
+ "loss": 1.8219,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.96,
955
+ "learning_rate": 5.5422883899871284e-05,
956
+ "loss": 1.8626,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.97,
961
+ "learning_rate": 5.493157998976559e-05,
962
+ "loss": 1.7252,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.97,
967
+ "learning_rate": 5.4439794766146746e-05,
968
+ "loss": 1.6911,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.98,
973
+ "learning_rate": 5.39475762263856e-05,
974
+ "loss": 1.8046,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.98,
979
+ "learning_rate": 5.34549724101439e-05,
980
+ "loss": 1.7559,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.99,
985
+ "learning_rate": 5.296203139468572e-05,
986
+ "loss": 1.8943,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 1.0,
991
+ "learning_rate": 5.246880129018516e-05,
992
+ "loss": 1.7772,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 1.0,
997
+ "learning_rate": 5.197533023503089e-05,
998
+ "loss": 1.7057,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 1.01,
1003
+ "learning_rate": 5.148166639112799e-05,
1004
+ "loss": 1.6976,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 1.02,
1009
+ "learning_rate": 5.0987857939197324e-05,
1010
+ "loss": 1.8151,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 1.02,
1015
+ "learning_rate": 5.049395307407329e-05,
1016
+ "loss": 1.7286,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 1.03,
1021
+ "learning_rate": 5e-05,
1022
+ "loss": 1.782,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 1.0,
1027
+ "learning_rate": 4.950604692592672e-05,
1028
+ "loss": 1.7561,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 1.01,
1033
+ "learning_rate": 4.901214206080269e-05,
1034
+ "loss": 1.6331,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 1.02,
1039
+ "learning_rate": 4.851833360887201e-05,
1040
+ "loss": 1.6803,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 1.02,
1045
+ "learning_rate": 4.802466976496911e-05,
1046
+ "loss": 1.7244,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 1.03,
1051
+ "learning_rate": 4.7531198709814854e-05,
1052
+ "loss": 1.7924,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 1.03,
1057
+ "learning_rate": 4.703796860531429e-05,
1058
+ "loss": 1.7374,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 1.04,
1063
+ "learning_rate": 4.654502758985611e-05,
1064
+ "loss": 1.6847,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 1.05,
1069
+ "learning_rate": 4.6052423773614404e-05,
1070
+ "loss": 1.7498,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 1.05,
1075
+ "learning_rate": 4.5560205233853266e-05,
1076
+ "loss": 1.8711,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 1.06,
1081
+ "learning_rate": 4.506842001023442e-05,
1082
+ "loss": 1.7231,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 1.07,
1087
+ "learning_rate": 4.4577116100128735e-05,
1088
+ "loss": 1.7341,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 1.07,
1093
+ "learning_rate": 4.4086341453931716e-05,
1094
+ "loss": 1.7211,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 1.08,
1099
+ "learning_rate": 4.3596143970383664e-05,
1100
+ "loss": 1.6533,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 1.08,
1105
+ "learning_rate": 4.3106571491894786e-05,
1106
+ "loss": 1.8128,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 1.09,
1111
+ "learning_rate": 4.2617671799875944e-05,
1112
+ "loss": 1.7778,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 1.1,
1117
+ "learning_rate": 4.212949261007519e-05,
1118
+ "loss": 1.6615,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 1.1,
1123
+ "learning_rate": 4.1642081567920846e-05,
1124
+ "loss": 1.8061,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 1.11,
1129
+ "learning_rate": 4.115548624387137e-05,
1130
+ "loss": 1.78,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 1.11,
1135
+ "learning_rate": 4.066975412877255e-05,
1136
+ "loss": 1.7801,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 1.12,
1141
+ "learning_rate": 4.0184932629222575e-05,
1142
+ "loss": 1.7524,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 1.13,
1147
+ "learning_rate": 3.970106906294509e-05,
1148
+ "loss": 1.7623,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 1.13,
1153
+ "learning_rate": 3.921821065417116e-05,
1154
+ "loss": 1.7811,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 1.14,
1159
+ "learning_rate": 3.873640452903026e-05,
1160
+ "loss": 1.7596,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 1.14,
1165
+ "learning_rate": 3.825569771095082e-05,
1166
+ "loss": 1.7775,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 1.15,
1171
+ "learning_rate": 3.777613711607087e-05,
1172
+ "loss": 1.7089,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 1.16,
1177
+ "learning_rate": 3.729776954865905e-05,
1178
+ "loss": 1.7586,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 1.16,
1183
+ "learning_rate": 3.682064169654663e-05,
1184
+ "loss": 1.7708,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 1.17,
1189
+ "learning_rate": 3.6344800126570844e-05,
1190
+ "loss": 1.7585,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 1.17,
1195
+ "learning_rate": 3.587029128003006e-05,
1196
+ "loss": 1.8535,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 1.18,
1201
+ "learning_rate": 3.539716146815122e-05,
1202
+ "loss": 1.7022,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 1.19,
1207
+ "learning_rate": 3.492545686756986e-05,
1208
+ "loss": 1.8033,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 1.19,
1213
+ "learning_rate": 3.4455223515823446e-05,
1214
+ "loss": 1.7032,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 1.2,
1219
+ "learning_rate": 3.3986507306858125e-05,
1220
+ "loss": 1.7893,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 1.21,
1225
+ "learning_rate": 3.351935398654961e-05,
1226
+ "loss": 1.8007,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 1.21,
1231
+ "learning_rate": 3.3053809148238426e-05,
1232
+ "loss": 1.6865,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 1.22,
1237
+ "learning_rate": 3.258991822828007e-05,
1238
+ "loss": 1.7272,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 1.22,
1243
+ "learning_rate": 3.212772650161056e-05,
1244
+ "loss": 1.6851,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 1.23,
1249
+ "learning_rate": 3.16672790773276e-05,
1250
+ "loss": 1.6703,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 1.24,
1255
+ "learning_rate": 3.12086208942881e-05,
1256
+ "loss": 1.7194,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 1.24,
1261
+ "learning_rate": 3.075179671672216e-05,
1262
+ "loss": 1.6898,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 1.25,
1267
+ "learning_rate": 3.0296851129864168e-05,
1268
+ "loss": 1.6836,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 1.25,
1273
+ "learning_rate": 2.98438285356014e-05,
1274
+ "loss": 1.6886,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 1.26,
1279
+ "learning_rate": 2.9392773148140408e-05,
1280
+ "loss": 1.6708,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 1.27,
1285
+ "learning_rate": 2.894372898969186e-05,
1286
+ "loss": 1.6964,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 1.27,
1291
+ "learning_rate": 2.8496739886173995e-05,
1292
+ "loss": 1.639,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 1.28,
1297
+ "learning_rate": 2.805184946293532e-05,
1298
+ "loss": 1.742,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 1.28,
1303
+ "learning_rate": 2.7609101140496863e-05,
1304
+ "loss": 1.758,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 1.29,
1309
+ "learning_rate": 2.716853813031435e-05,
1310
+ "loss": 1.6614,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 1.3,
1315
+ "learning_rate": 2.6730203430560947e-05,
1316
+ "loss": 1.7814,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 1.3,
1321
+ "learning_rate": 2.6294139821930597e-05,
1322
+ "loss": 1.7335,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 1.31,
1327
+ "learning_rate": 2.5860389863462765e-05,
1328
+ "loss": 1.7071,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 1.31,
1333
+ "learning_rate": 2.542899588838875e-05,
1334
+ "loss": 1.7433,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 1.32,
1339
+ "learning_rate": 2.500000000000001e-05,
1340
+ "loss": 1.7727,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 1.33,
1345
+ "learning_rate": 2.4573444067538986e-05,
1346
+ "loss": 1.6221,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 1.33,
1351
+ "learning_rate": 2.414936972211272e-05,
1352
+ "loss": 1.7824,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 1.34,
1357
+ "learning_rate": 2.3727818352629712e-05,
1358
+ "loss": 1.832,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 1.34,
1363
+ "learning_rate": 2.3308831101760486e-05,
1364
+ "loss": 1.6692,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 1.35,
1369
+ "learning_rate": 2.289244886192207e-05,
1370
+ "loss": 1.7652,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 1.36,
1375
+ "learning_rate": 2.247871227128709e-05,
1376
+ "loss": 1.7668,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 1.36,
1381
+ "learning_rate": 2.2067661709817383e-05,
1382
+ "loss": 1.7603,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 1.37,
1387
+ "learning_rate": 2.1659337295323118e-05,
1388
+ "loss": 1.7214,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 1.38,
1393
+ "learning_rate": 2.125377887954732e-05,
1394
+ "loss": 1.664,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 1.38,
1399
+ "learning_rate": 2.0851026044276406e-05,
1400
+ "loss": 1.7438,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 1.39,
1405
+ "learning_rate": 2.0451118097477094e-05,
1406
+ "loss": 1.7077,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 1.39,
1411
+ "learning_rate": 2.005409406946e-05,
1412
+ "loss": 1.6965,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 1.4,
1417
+ "learning_rate": 1.9659992709070345e-05,
1418
+ "loss": 1.7149,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 1.41,
1423
+ "learning_rate": 1.9268852479906147e-05,
1424
+ "loss": 1.7308,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 1.41,
1429
+ "learning_rate": 1.888071155656421e-05,
1430
+ "loss": 1.8064,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 1.42,
1435
+ "learning_rate": 1.849560782091445e-05,
1436
+ "loss": 1.7866,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 1.42,
1441
+ "learning_rate": 1.811357885840254e-05,
1442
+ "loss": 1.7135,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 1.43,
1447
+ "learning_rate": 1.7734661954381754e-05,
1448
+ "loss": 1.7349,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 1.44,
1453
+ "learning_rate": 1.7358894090473925e-05,
1454
+ "loss": 1.7935,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 1.44,
1459
+ "learning_rate": 1.6986311940960147e-05,
1460
+ "loss": 1.693,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 1.45,
1465
+ "learning_rate": 1.661695186920138e-05,
1466
+ "loss": 1.8604,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 1.45,
1471
+ "learning_rate": 1.6250849924089484e-05,
1472
+ "loss": 1.741,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 1.46,
1477
+ "learning_rate": 1.5888041836528915e-05,
1478
+ "loss": 1.6668,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 1.47,
1483
+ "learning_rate": 1.552856301594942e-05,
1484
+ "loss": 1.6838,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 1.47,
1489
+ "learning_rate": 1.5172448546850165e-05,
1490
+ "loss": 1.7143,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 1.48,
1495
+ "learning_rate": 1.4819733185375534e-05,
1496
+ "loss": 1.6719,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 1.48,
1501
+ "learning_rate": 1.4470451355923027e-05,
1502
+ "loss": 1.7879,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 1.49,
1507
+ "learning_rate": 1.4124637147783432e-05,
1508
+ "loss": 1.6943,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 1.5,
1513
+ "learning_rate": 1.378232431181386e-05,
1514
+ "loss": 1.7382,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 1.5,
1519
+ "learning_rate": 1.3443546257143624e-05,
1520
+ "loss": 1.7818,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 1.51,
1525
+ "learning_rate": 1.3108336047913633e-05,
1526
+ "loss": 1.6781,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 1.52,
1531
+ "learning_rate": 1.277672640004936e-05,
1532
+ "loss": 1.6687,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 1.52,
1537
+ "learning_rate": 1.2448749678067856e-05,
1538
+ "loss": 1.7702,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 1.53,
1543
+ "learning_rate": 1.2124437891918993e-05,
1544
+ "loss": 1.7324,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 1.53,
1549
+ "learning_rate": 1.1803822693861378e-05,
1550
+ "loss": 1.7849,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 1.54,
1555
+ "learning_rate": 1.1486935375373126e-05,
1556
+ "loss": 1.6662,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 1.55,
1561
+ "learning_rate": 1.1173806864097886e-05,
1562
+ "loss": 1.7473,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 1.55,
1567
+ "learning_rate": 1.0864467720826343e-05,
1568
+ "loss": 1.7529,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 1.56,
1573
+ "learning_rate": 1.0558948136513535e-05,
1574
+ "loss": 1.7526,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 1.56,
1579
+ "learning_rate": 1.0257277929332332e-05,
1580
+ "loss": 1.721,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 1.57,
1585
+ "learning_rate": 9.959486541763119e-06,
1586
+ "loss": 1.7076,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 1.58,
1591
+ "learning_rate": 9.66560303772035e-06,
1592
+ "loss": 1.7822,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 1.58,
1597
+ "learning_rate": 9.375656099715934e-06,
1598
+ "loss": 1.7664,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 1.59,
1603
+ "learning_rate": 9.08967402605988e-06,
1604
+ "loss": 1.6733,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 1.59,
1609
+ "learning_rate": 8.80768472809842e-06,
1610
+ "loss": 1.717,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 1.6,
1615
+ "learning_rate": 8.529715727489912e-06,
1616
+ "loss": 1.7967,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 1.61,
1621
+ "learning_rate": 8.255794153518798e-06,
1622
+ "loss": 1.5902,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 1.61,
1627
+ "learning_rate": 7.985946740447791e-06,
1628
+ "loss": 1.785,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 1.62,
1633
+ "learning_rate": 7.720199824908692e-06,
1634
+ "loss": 1.7182,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 1.62,
1639
+ "learning_rate": 7.458579343331995e-06,
1640
+ "loss": 1.7056,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 1.63,
1645
+ "learning_rate": 7.2011108294154804e-06,
1646
+ "loss": 1.7588,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 1.64,
1651
+ "learning_rate": 6.947819411632223e-06,
1652
+ "loss": 1.6806,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 1.64,
1657
+ "learning_rate": 6.698729810778065e-06,
1658
+ "loss": 1.6865,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 1.65,
1663
+ "learning_rate": 6.45386633755894e-06,
1664
+ "loss": 1.7063,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 1.66,
1669
+ "learning_rate": 6.213252890218163e-06,
1670
+ "loss": 1.6924,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 1.66,
1675
+ "learning_rate": 5.976912952204017e-06,
1676
+ "loss": 1.7508,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 1.67,
1681
+ "learning_rate": 5.74486958987781e-06,
1682
+ "loss": 1.7623,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 1.67,
1687
+ "learning_rate": 5.51714545026264e-06,
1688
+ "loss": 1.7495,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 1.68,
1693
+ "learning_rate": 5.293762758833071e-06,
1694
+ "loss": 1.7111,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 1.69,
1699
+ "learning_rate": 5.074743317346009e-06,
1700
+ "loss": 1.7635,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 1.69,
1705
+ "learning_rate": 4.860108501712824e-06,
1706
+ "loss": 1.6867,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 1.7,
1711
+ "learning_rate": 4.649879259913137e-06,
1712
+ "loss": 1.7256,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 1.7,
1717
+ "learning_rate": 4.4440761099503455e-06,
1718
+ "loss": 1.7276,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 1.71,
1723
+ "learning_rate": 4.242719137849077e-06,
1724
+ "loss": 1.7283,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 1.72,
1729
+ "learning_rate": 4.045827995694834e-06,
1730
+ "loss": 1.7619,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 1.72,
1735
+ "learning_rate": 3.853421899715992e-06,
1736
+ "loss": 1.7451,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 1.73,
1741
+ "learning_rate": 3.6655196284083317e-06,
1742
+ "loss": 1.7501,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 1.73,
1747
+ "learning_rate": 3.4821395207022766e-06,
1748
+ "loss": 1.8164,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 1.74,
1753
+ "learning_rate": 3.303299474173066e-06,
1754
+ "loss": 1.6923,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 1.75,
1759
+ "learning_rate": 3.1290169432939553e-06,
1760
+ "loss": 1.823,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 1.75,
1765
+ "learning_rate": 2.9593089377327245e-06,
1766
+ "loss": 1.7789,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 1.76,
1771
+ "learning_rate": 2.794192020691544e-06,
1772
+ "loss": 1.732,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 1.76,
1777
+ "learning_rate": 2.6336823072904304e-06,
1778
+ "loss": 1.6913,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 1.77,
1783
+ "learning_rate": 2.4777954629944477e-06,
1784
+ "loss": 1.8344,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 1.78,
1789
+ "learning_rate": 2.3265467020847866e-06,
1790
+ "loss": 1.7282,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 1.78,
1795
+ "learning_rate": 2.179950786173879e-06,
1796
+ "loss": 1.715,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 1.79,
1801
+ "learning_rate": 2.038022022764685e-06,
1802
+ "loss": 1.6707,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 1.79,
1807
+ "learning_rate": 1.9007742638543102e-06,
1808
+ "loss": 1.7191,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 1.8,
1813
+ "learning_rate": 1.7682209045820686e-06,
1814
+ "loss": 1.6994,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 1.81,
1819
+ "learning_rate": 1.6403748819221466e-06,
1820
+ "loss": 1.7857,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 1.81,
1825
+ "learning_rate": 1.5172486734209789e-06,
1826
+ "loss": 1.8173,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 1.82,
1831
+ "learning_rate": 1.3988542959794627e-06,
1832
+ "loss": 1.8064,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 1.83,
1837
+ "learning_rate": 1.2852033046801104e-06,
1838
+ "loss": 1.741,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 1.83,
1843
+ "learning_rate": 1.1763067916593262e-06,
1844
+ "loss": 1.7858,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 1.84,
1849
+ "learning_rate": 1.0721753850247984e-06,
1850
+ "loss": 1.6811,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 1.84,
1855
+ "learning_rate": 9.728192478182574e-07,
1856
+ "loss": 1.8126,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 1.85,
1861
+ "learning_rate": 8.782480770235247e-07,
1862
+ "loss": 1.8005,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 1.86,
1867
+ "learning_rate": 7.884711026201585e-07,
1868
+ "loss": 1.8307,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 1.86,
1873
+ "learning_rate": 7.034970866825974e-07,
1874
+ "loss": 1.6815,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 1.87,
1879
+ "learning_rate": 6.233343225249933e-07,
1880
+ "loss": 1.6576,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 1.87,
1885
+ "learning_rate": 5.479906338917984e-07,
1886
+ "loss": 1.647,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 1.88,
1891
+ "learning_rate": 4.774733741942206e-07,
1892
+ "loss": 1.698,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 1.89,
1897
+ "learning_rate": 4.1178942579248036e-07,
1898
+ "loss": 1.722,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 1.89,
1903
+ "learning_rate": 3.5094519932415417e-07,
1904
+ "loss": 1.7361,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 1.9,
1909
+ "learning_rate": 2.9494663307847447e-07,
1910
+ "loss": 1.7881,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 1.9,
1915
+ "learning_rate": 2.437991924167937e-07,
1916
+ "loss": 1.7061,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 1.91,
1921
+ "learning_rate": 1.975078692391552e-07,
1922
+ "loss": 1.8235,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 1.92,
1927
+ "learning_rate": 1.560771814970885e-07,
1928
+ "loss": 1.7096,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 1.92,
1933
+ "learning_rate": 1.195111727526843e-07,
1934
+ "loss": 1.7408,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 1.93,
1939
+ "learning_rate": 8.781341178393244e-08,
1940
+ "loss": 1.6738,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 1.93,
1945
+ "learning_rate": 6.098699223641702e-08,
1946
+ "loss": 1.7742,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 1.94,
1951
+ "learning_rate": 3.9034532321408076e-08,
1952
+ "loss": 1.6591,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 1.95,
1957
+ "learning_rate": 2.1958174560282595e-08,
1958
+ "loss": 1.841,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 1.95,
1963
+ "learning_rate": 9.75958557545842e-09,
1964
+ "loss": 1.7205,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 1.96,
1969
+ "learning_rate": 2.4399559277132888e-09,
1970
+ "loss": 1.7067,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 1.97,
1975
+ "learning_rate": 0.0,
1976
+ "loss": 1.7346,
1977
+ "step": 328
1978
+ }
1979
+ ],
1980
+ "logging_steps": 1,
1981
+ "max_steps": 328,
1982
+ "num_input_tokens_seen": 0,
1983
+ "num_train_epochs": 2,
1984
+ "save_steps": 500,
1985
+ "total_flos": 8.91586250599406e+18,
1986
+ "train_batch_size": 1,
1987
+ "trial_name": null,
1988
+ "trial_params": null
1989
+ }
checkpoint-328/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39e60f1b5d15ced53a534111f26d4623440cc37c60600828e28ffd0da0da5e62
3
+ size 5304
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models/miqu-1-70b-sf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 8192,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 28672,
14
+ "max_position_embeddings": 32764,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 64,
17
+ "num_hidden_layers": 80,
18
+ "num_key_value_heads": 8,
19
+ "pad_token_id": 0,
20
+ "pretraining_tp": 1,
21
+ "quantization_config": {
22
+ "bnb_4bit_compute_dtype": "bfloat16",
23
+ "bnb_4bit_quant_type": "nf4",
24
+ "bnb_4bit_use_double_quant": true,
25
+ "llm_int8_enable_fp32_cpu_offload": false,
26
+ "llm_int8_has_fp16_weight": false,
27
+ "llm_int8_skip_modules": null,
28
+ "llm_int8_threshold": 6.0,
29
+ "load_in_4bit": true,
30
+ "load_in_8bit": false,
31
+ "quant_method": "bitsandbytes"
32
+ },
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_scaling": null,
35
+ "rope_theta": 1000000,
36
+ "tie_word_embeddings": false,
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.37.0",
39
+ "use_cache": false,
40
+ "vocab_size": 32000
41
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "clean_up_tokenization_spaces": false,
32
+ "eos_token": "</s>",
33
+ "legacy": false,
34
+ "model_max_length": 1000000000000000019884624838656,
35
+ "pad_token": "<unk>",
36
+ "sp_model_kwargs": {},
37
+ "spaces_between_special_tokens": false,
38
+ "tokenizer_class": "LlamaTokenizer",
39
+ "trust_remote_code": false,
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false,
42
+ "use_fast": true
43
+ }