Upload DDPM_Inversion.ipynb
Browse files- DDPM_Inversion.ipynb +352 -0
DDPM_Inversion.ipynb
ADDED
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"machine_shape": "hm",
|
8 |
+
"gpuType": "L4"
|
9 |
+
},
|
10 |
+
"kernelspec": {
|
11 |
+
"name": "python3",
|
12 |
+
"display_name": "Python 3"
|
13 |
+
},
|
14 |
+
"language_info": {
|
15 |
+
"name": "python"
|
16 |
+
},
|
17 |
+
"accelerator": "GPU"
|
18 |
+
},
|
19 |
+
"cells": [
|
20 |
+
{
|
21 |
+
"cell_type": "markdown",
|
22 |
+
"source": [
|
23 |
+
"# https://github.com/inbarhub/DDPM_inversion"
|
24 |
+
],
|
25 |
+
"metadata": {
|
26 |
+
"id": "2pmc1ZdmtAQJ"
|
27 |
+
}
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"execution_count": null,
|
32 |
+
"metadata": {
|
33 |
+
"id": "GsGhwPzb_RBH"
|
34 |
+
},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"%pip install numpy\n",
|
38 |
+
"%pip install matplotlib\n",
|
39 |
+
"%pip install fastai\n",
|
40 |
+
"%pip install accelerate\n",
|
41 |
+
"%pip install -U transformers diffusers ftfy\n",
|
42 |
+
"%pip install torch\n",
|
43 |
+
"%pip install torchvision\n",
|
44 |
+
"%pip install opencv-python\n",
|
45 |
+
"%pip install ipywidgets"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"source": [
|
51 |
+
"import inspect\n",
|
52 |
+
"\n",
|
53 |
+
"from pathlib import Path\n",
|
54 |
+
"\n",
|
55 |
+
"import numpy as np\n",
|
56 |
+
"import torch\n",
|
57 |
+
"from accelerate import Accelerator\n",
|
58 |
+
"from diffusers import (\n",
|
59 |
+
" AutoencoderKL,\n",
|
60 |
+
" UNet2DConditionModel,\n",
|
61 |
+
" DDIMScheduler,\n",
|
62 |
+
" DPMSolverMultistepScheduler,\n",
|
63 |
+
")\n",
|
64 |
+
"from huggingface_hub import notebook_login\n",
|
65 |
+
"from PIL import Image\n",
|
66 |
+
"from torchvision import transforms as tfms\n",
|
67 |
+
"from tqdm.auto import tqdm\n",
|
68 |
+
"from transformers import CLIPTextModel, CLIPTokenizer\n",
|
69 |
+
"from typing import Optional\n",
|
70 |
+
"import requests\n",
|
71 |
+
"\n",
|
72 |
+
"notebook_login()"
|
73 |
+
],
|
74 |
+
"metadata": {
|
75 |
+
"id": "sYCb0YhF_YqC"
|
76 |
+
},
|
77 |
+
"execution_count": null,
|
78 |
+
"outputs": []
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"source": [
|
83 |
+
"from google.colab import drive\n",
|
84 |
+
"drive.mount('/content/drive')"
|
85 |
+
],
|
86 |
+
"metadata": {
|
87 |
+
"id": "W3Ik_48j_Y1q"
|
88 |
+
},
|
89 |
+
"execution_count": null,
|
90 |
+
"outputs": []
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"source": [
|
95 |
+
"#init_image μ¦, μΈνμ© μ΄λ―Έμ§ λ§λλ μ
\n",
|
96 |
+
"\n",
|
97 |
+
"init_image = load_image(path=\"/content/DDPM_inversion/Input_Images/cherry blossom branch petal.png\") #fill your own directory\n",
|
98 |
+
"\n",
|
99 |
+
"init_path = \"/content/DDPM_inversion/Input_Images/cherry blossom branch petal.png\" #fill your own directory"
|
100 |
+
],
|
101 |
+
"metadata": {
|
102 |
+
"id": "tuhPV23T_Y4k"
|
103 |
+
},
|
104 |
+
"execution_count": null,
|
105 |
+
"outputs": []
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"source": [
|
110 |
+
"from transformers import Blip2Processor, Blip2ForConditionalGeneration\n",
|
111 |
+
"\n",
|
112 |
+
"processor = Blip2Processor.from_pretrained(\"Salesforce/blip2-opt-2.7b\")\n",
|
113 |
+
"imagecaptioningmodel = Blip2ForConditionalGeneration.from_pretrained(\"Salesforce/blip2-opt-2.7b\").to(device)\n",
|
114 |
+
"inputs = processor(init_image, return_tensors=\"pt\").to(device) #맀κ°λ³μ\n",
|
115 |
+
"outputs = imagecaptioningmodel.generate(**inputs)\n",
|
116 |
+
"print(processor.decode(outputs[0], skip_special_tokens=True))"
|
117 |
+
],
|
118 |
+
"metadata": {
|
119 |
+
"id": "WRyROFhX_Y7c"
|
120 |
+
},
|
121 |
+
"execution_count": null,
|
122 |
+
"outputs": []
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "code",
|
126 |
+
"source": [
|
127 |
+
"prompt = str(processor.decode(outputs[0], skip_special_tokens=True))"
|
128 |
+
],
|
129 |
+
"metadata": {
|
130 |
+
"id": "rh01KUQh_vW1"
|
131 |
+
},
|
132 |
+
"execution_count": null,
|
133 |
+
"outputs": []
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"cell_type": "code",
|
137 |
+
"source": [
|
138 |
+
"import yaml\n",
|
139 |
+
"data = [\n",
|
140 |
+
" {\n",
|
141 |
+
" \"init_img\": \"/content/DDPM_inversion/Input_Images/Cherry Blossoms.png\", #init_path μ¬μ©\n",
|
142 |
+
" \"source_prompt\": \"\",\n",
|
143 |
+
" \"target_prompts\": [\n",
|
144 |
+
" \"\",\n",
|
145 |
+
" ]\n",
|
146 |
+
" },\n",
|
147 |
+
"]\n",
|
148 |
+
"\n",
|
149 |
+
"file_path = '/content/DDPM_inversion/test.yaml' # λ³κ²½ κ°λ₯ν νμΌ κ²½λ‘\n",
|
150 |
+
"\n",
|
151 |
+
"with open(file_path, 'w') as file:\n",
|
152 |
+
" yaml.dump(data, file)\n",
|
153 |
+
"with open(file_path, 'r') as file:\n",
|
154 |
+
" print(file.read())"
|
155 |
+
],
|
156 |
+
"metadata": {
|
157 |
+
"id": "wZighP5oNL1X"
|
158 |
+
},
|
159 |
+
"execution_count": null,
|
160 |
+
"outputs": []
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"source": [
|
165 |
+
"!git clone https://github.com/Kangdongkyung/DDPM_inversion.git #do not use this. change to original git repository"
|
166 |
+
],
|
167 |
+
"metadata": {
|
168 |
+
"id": "fuW0T7AzRPEz"
|
169 |
+
},
|
170 |
+
"execution_count": null,
|
171 |
+
"outputs": []
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"source": [
|
176 |
+
"%cd /content/DDPM_inversion #fill your own directory"
|
177 |
+
],
|
178 |
+
"metadata": {
|
179 |
+
"id": "mM7wwPjycqSK"
|
180 |
+
},
|
181 |
+
"execution_count": null,
|
182 |
+
"outputs": []
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"cell_type": "code",
|
186 |
+
"source": [
|
187 |
+
"from easydict import EasyDict\n",
|
188 |
+
"from diffusers import StableDiffusionPipeline\n",
|
189 |
+
"from diffusers import DDIMScheduler\n",
|
190 |
+
"import os\n",
|
191 |
+
"from prompt_to_prompt.ptp_classes import AttentionStore, AttentionReplace, AttentionRefine, EmptyControl,load_512\n",
|
192 |
+
"from prompt_to_prompt.ptp_utils import register_attention_control, text2image_ldm_stable, view_images\n",
|
193 |
+
"from ddm_inversion.inversion_utils import inversion_forward_process, inversion_reverse_process\n",
|
194 |
+
"from ddm_inversion.utils import image_grid,dataset_from_yaml\n",
|
195 |
+
"\n",
|
196 |
+
"from torch import autocast, inference_mode\n",
|
197 |
+
"from ddm_inversion.ddim_inversion import ddim_inversion\n",
|
198 |
+
"\n",
|
199 |
+
"import calendar\n",
|
200 |
+
"import time\n",
|
201 |
+
"\n",
|
202 |
+
"if __name__ == \"__main__\":\n",
|
203 |
+
" # parser = argparse.ArgumentParser()\n",
|
204 |
+
" # parser.add_argument(\"--device_num\", type=int, default=0)\n",
|
205 |
+
" # parser.add_argument(\"--cfg_src\", type=float, default=3.5)\n",
|
206 |
+
" # parser.add_argument(\"--cfg_tar\", type=float, default=15)\n",
|
207 |
+
" # parser.add_argument(\"--num_diffusion_steps\", type=int, default=100)\n",
|
208 |
+
" # parser.add_argument(\"--dataset_yaml\", default=\"test.yaml\")\n",
|
209 |
+
" # parser.add_argument(\"--eta\", type=float, default=1)\n",
|
210 |
+
" # parser.add_argument(\"--mode\", default=\"our_inv\", help=\"modes: our_inv,p2pinv,p2pddim,ddim\")\n",
|
211 |
+
" # parser.add_argument(\"--skip\", type=int, default=36)\n",
|
212 |
+
" # parser.add_argument(\"--xa\", type=float, default=0.6)\n",
|
213 |
+
" # parser.add_argument(\"--sa\", type=float, default=0.2)\n",
|
214 |
+
"\n",
|
215 |
+
" # args = parser.parse_args()\n",
|
216 |
+
" args = EasyDict()\n",
|
217 |
+
" args.dataset_yaml = file_path\n",
|
218 |
+
" args.cfg_src = 3.5\n",
|
219 |
+
" args.cfg_tar = 15\n",
|
220 |
+
" args.num_diffusion_steps = 100\n",
|
221 |
+
" args.eta = 1\n",
|
222 |
+
" args.mode = \"our_inv\"\n",
|
223 |
+
" args.skip = 36\n",
|
224 |
+
" args.xa = 0.6\n",
|
225 |
+
" args.sa = 0.2\n",
|
226 |
+
"\n",
|
227 |
+
" full_data = dataset_from_yaml(args.dataset_yaml)\n",
|
228 |
+
"\n",
|
229 |
+
" # create scheduler\n",
|
230 |
+
" # load diffusion model\n",
|
231 |
+
" model_id = \"CompVis/stable-diffusion-v1-4\"\n",
|
232 |
+
" # model_id = \"stable_diff_local\" # load local save of model (for internet problems)\n",
|
233 |
+
"\n",
|
234 |
+
"\n",
|
235 |
+
" cfg_scale_src = args.cfg_src\n",
|
236 |
+
" cfg_scale_tar_list = [args.cfg_tar]\n",
|
237 |
+
" eta = args.eta # = 1\n",
|
238 |
+
" skip_zs = [args.skip]\n",
|
239 |
+
" xa_sa_string = f'_xa_{args.xa}_sa{args.sa}_' if args.mode=='p2pinv' else '_'\n",
|
240 |
+
"\n",
|
241 |
+
" current_GMT = time.gmtime()\n",
|
242 |
+
" time_stamp = calendar.timegm(current_GMT)\n",
|
243 |
+
"\n",
|
244 |
+
" # load/reload model:\n",
|
245 |
+
" ldm_stable = StableDiffusionPipeline.from_pretrained(model_id).to(device)\n",
|
246 |
+
"\n",
|
247 |
+
" for i in range(len(full_data)):\n",
|
248 |
+
" current_image_data = full_data[i]\n",
|
249 |
+
" image_path = current_image_data['init_img']\n",
|
250 |
+
" image_path = image_path #μ§κΈμ κ²½λ‘κ° μλμ λ»νκΈ° μν΄ '.'μ μ κ±°ν κ². λ°λΌμ μμ νμ.\n",
|
251 |
+
" image_folder = image_path.split('/')[1] # after '.'\n",
|
252 |
+
" prompt_src = current_image_data.get('source_prompt', \"\") # default empty string\n",
|
253 |
+
" prompt_tar_list = current_image_data['target_prompts']\n",
|
254 |
+
"\n",
|
255 |
+
" if args.mode==\"p2pddim\" or args.mode==\"ddim\":\n",
|
256 |
+
" scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule=\"scaled_linear\", clip_sample=False, set_alpha_to_one=False)\n",
|
257 |
+
" ldm_stable.scheduler = scheduler\n",
|
258 |
+
" else:\n",
|
259 |
+
" ldm_stable.scheduler = DDIMScheduler.from_config(model_id, subfolder = \"scheduler\")\n",
|
260 |
+
"\n",
|
261 |
+
" ldm_stable.scheduler.set_timesteps(args.num_diffusion_steps)\n",
|
262 |
+
"\n",
|
263 |
+
" # load image\n",
|
264 |
+
" offsets=(0,0,0,0)\n",
|
265 |
+
" x0 = load_512(image_path, *offsets, device)\n",
|
266 |
+
"\n",
|
267 |
+
" # vae encode image\n",
|
268 |
+
" with autocast(\"cuda\"), inference_mode():\n",
|
269 |
+
" w0 = (ldm_stable.vae.encode(x0).latent_dist.mode() * 0.18215).float()\n",
|
270 |
+
"\n",
|
271 |
+
" # find Zs and wts - forward process\n",
|
272 |
+
" if args.mode==\"p2pddim\" or args.mode==\"ddim\":\n",
|
273 |
+
" wT = ddim_inversion(ldm_stable, w0, prompt_src, cfg_scale_src)\n",
|
274 |
+
" else:\n",
|
275 |
+
" wt, zs, wts = inversion_forward_process(ldm_stable, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=args.num_diffusion_steps)\n",
|
276 |
+
"\n",
|
277 |
+
" # iterate over decoder prompts\n",
|
278 |
+
" for k in range(len(prompt_tar_list)):\n",
|
279 |
+
" prompt_tar = prompt_tar_list[k]\n",
|
280 |
+
" save_path = os.path.join(f'./results/', args.mode+xa_sa_string+str(time_stamp), image_path.split(sep='.')[0], 'src_' + prompt_src.replace(\" \", \"_\"), 'dec_' + prompt_tar.replace(\" \", \"_\"))\n",
|
281 |
+
" os.makedirs(save_path, exist_ok=True)\n",
|
282 |
+
"\n",
|
283 |
+
" # Check if number of words in encoder and decoder text are equal\n",
|
284 |
+
" src_tar_len_eq = (len(prompt_src.split(\" \")) == len(prompt_tar.split(\" \")))\n",
|
285 |
+
"\n",
|
286 |
+
" for cfg_scale_tar in cfg_scale_tar_list:\n",
|
287 |
+
" for skip in skip_zs:\n",
|
288 |
+
" if args.mode==\"our_inv\":\n",
|
289 |
+
" # reverse process (via Zs and wT)\n",
|
290 |
+
" controller = AttentionStore()\n",
|
291 |
+
" register_attention_control(ldm_stable, controller)\n",
|
292 |
+
" w0, _ = inversion_reverse_process(ldm_stable, xT=wts[args.num_diffusion_steps-skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[:(args.num_diffusion_steps-skip)], controller=controller)\n",
|
293 |
+
"\n",
|
294 |
+
" elif args.mode==\"p2pinv\":\n",
|
295 |
+
" # inversion with attention replace\n",
|
296 |
+
" cfg_scale_list = [cfg_scale_src, cfg_scale_tar]\n",
|
297 |
+
" prompts = [prompt_src, prompt_tar]\n",
|
298 |
+
" if src_tar_len_eq:\n",
|
299 |
+
" controller = AttentionReplace(prompts, args.num_diffusion_steps, cross_replace_steps=args.xa, self_replace_steps=args.sa, model=ldm_stable)\n",
|
300 |
+
" else:\n",
|
301 |
+
" # Should use Refine for target prompts with different number of tokens\n",
|
302 |
+
" controller = AttentionRefine(prompts, args.num_diffusion_steps, cross_replace_steps=args.xa, self_replace_steps=args.sa, model=ldm_stable)\n",
|
303 |
+
"\n",
|
304 |
+
" register_attention_control(ldm_stable, controller)\n",
|
305 |
+
" w0, _ = inversion_reverse_process(ldm_stable, xT=wts[args.num_diffusion_steps-skip], etas=eta, prompts=prompts, cfg_scales=cfg_scale_list, prog_bar=True, zs=zs[:(args.num_diffusion_steps-skip)], controller=controller)\n",
|
306 |
+
" w0 = w0[1].unsqueeze(0)\n",
|
307 |
+
"\n",
|
308 |
+
" elif args.mode==\"p2pddim\" or args.mode==\"ddim\":\n",
|
309 |
+
" # only z=0\n",
|
310 |
+
" if skip != 0:\n",
|
311 |
+
" continue\n",
|
312 |
+
" prompts = [prompt_src, prompt_tar]\n",
|
313 |
+
" if args.mode==\"p2pddim\":\n",
|
314 |
+
" if src_tar_len_eq:\n",
|
315 |
+
" controller = AttentionReplace(prompts, args.num_diffusion_steps, cross_replace_steps=.8, self_replace_steps=0.4, model=ldm_stable)\n",
|
316 |
+
" # Should use Refine for target prompts with different number of tokens\n",
|
317 |
+
" else:\n",
|
318 |
+
" controller = AttentionRefine(prompts, args.num_diffusion_steps, cross_replace_steps=.8, self_replace_steps=0.4, model=ldm_stable)\n",
|
319 |
+
" else:\n",
|
320 |
+
" controller = EmptyControl()\n",
|
321 |
+
"\n",
|
322 |
+
" register_attention_control(ldm_stable, controller)\n",
|
323 |
+
" # perform ddim inversion\n",
|
324 |
+
" cfg_scale_list = [cfg_scale_src, cfg_scale_tar]\n",
|
325 |
+
" w0, latent = text2image_ldm_stable(ldm_stable, prompts, controller, args.num_diffusion_steps, cfg_scale_list, None, wT)\n",
|
326 |
+
" w0 = w0[1:2]\n",
|
327 |
+
" else:\n",
|
328 |
+
" raise NotImplementedError\n",
|
329 |
+
"\n",
|
330 |
+
" # vae decode image\n",
|
331 |
+
" with autocast(\"cuda\"), inference_mode():\n",
|
332 |
+
" x0_dec = ldm_stable.vae.decode(1 / 0.18215 * w0).sample\n",
|
333 |
+
" if x0_dec.dim()<4:\n",
|
334 |
+
" x0_dec = x0_dec[None,:,:,:]\n",
|
335 |
+
" img = image_grid(x0_dec)\n",
|
336 |
+
"\n",
|
337 |
+
" # same output\n",
|
338 |
+
" current_GMT = time.gmtime()\n",
|
339 |
+
" time_stamp_name = calendar.timegm(current_GMT)\n",
|
340 |
+
" image_name_png = f'cfg_d_{cfg_scale_tar}_' + f'skip_{skip}_{time_stamp_name}' + \".png\"\n",
|
341 |
+
"\n",
|
342 |
+
" save_full_path = os.path.join(save_path, image_name_png)\n",
|
343 |
+
" img.save(save_full_path)"
|
344 |
+
],
|
345 |
+
"metadata": {
|
346 |
+
"id": "dcVYikEa_wQ1"
|
347 |
+
},
|
348 |
+
"execution_count": null,
|
349 |
+
"outputs": []
|
350 |
+
}
|
351 |
+
]
|
352 |
+
}
|