File size: 1,844 Bytes
62fa888
 
 
 
 
 
 
 
 
 
37ad16e
 
62fa888
 
 
 
 
 
 
 
 
 
 
 
 
 
40f9e22
 
 
 
 
 
 
 
 
 
62fa888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37ad16e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: cc-by-sa-4.0
base_model: klue/bert-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: bert-base-finetuned-ynat
  results: []
language:
- ko
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-finetuned-ynat

This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3745
- F1: 0.8704

## Model description

뉴스 제목을 입력하면 뉴스의 카테고리를 예측
label_map = {
    'LABEL_0': 'IT/과학',
    'LABEL_1': '경제',
    'LABEL_2': '사회',
    'LABEL_3': '생활문화',
    'LABEL_4': '세계',
    'LABEL_5': '스포츠',
    'LABEL_6': '정치'
}

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 1.0   | 179  | 0.3909          | 0.8655 |
| No log        | 2.0   | 358  | 0.3788          | 0.8684 |
| 0.3774        | 3.0   | 537  | 0.3629          | 0.8699 |
| 0.3774        | 4.0   | 716  | 0.3776          | 0.8667 |
| 0.3774        | 5.0   | 895  | 0.3745          | 0.8704 |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0