DorinSht commited on
Commit
42303c8
1 Parent(s): 98dbc09

Training in progress, step 1000

Browse files
cmd.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ /var/spool/slurmd/job116988/slurm_script 04-06_01-01
commit.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ commit c4fe47d125efdcc428a5dd46500d754dc07f4a94
2
+ Author: Shteyman <[email protected]>
3
+ Date: Sun Jun 2 08:25:22 2024 -0700
4
+
5
+ clean version of run_clm.py
events.out.tfevents.1717488111.isl-gpu33.2434801.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f45ed4aeee7fe305f565aefaa0438afb9c9eb197a3d37c0f97c5f88ba132713
3
+ size 5696
experiment_code/config/config1.yaml ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ config_name: "JackFram/llama-68m"
2
+ tokenizer_name: "JackFram/llama-68m"
3
+ validation_split_percentage: 2
4
+ train_file: "/home/dshteyma/shareGPT_data/ShareGPT_V3_unfiltered_cleaned_split.json"
5
+ dataset_name_hub: "anon8231489123/ShareGPT_Vicuna_unfiltered/ShareGPT_V3_unfiltered_cleaned_split.json"
6
+ dataset_name_local: "ShareGPT"
7
+ # max_train_samples: 1000
8
+ # max_eval_samples: 10
9
+ do_train: True
10
+ do_eval: True
11
+ output_dir: "/home/dshteyma/target_draft_coupling_code/target_draft_training/training_outputs"
12
+ overwrite_output_dir: True
13
+ per_device_train_batch_size: 4
14
+ gradient_accumulation_steps: 1
15
+ report_to: "tensorboard"
16
+ logging_dir: "/home/dshteyma/target_draft_coupling_code/target_draft_training/training_outputs"
17
+ logging_steps: 500
18
+ save_steps: 1000
19
+ eval_strategy: "steps"
20
+ eval_steps: 1000
21
+ learning_rate: 0.0001
22
+ gradient_accumulation_steps: 1
23
+ weight_decay: 0.01
24
+ warmup_ratio: 0.05
25
+ push_to_hub: True
26
+ hub_model_id: "DorinSht/recreate_llama_68M_vanilla"
experiment_code/config/config_redpajama.yaml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ config_name: "JackFram/llama-68m"
2
+ tokenizer_name: "JackFram/llama-68m"
3
+ validation_split_percentage: 2
4
+ train_file: "/home/dshteyma/target_draft_coupling_code/dataset_dict.json"
5
+ dataset_name_local: "RedPajama"
6
+ dataset_name: "togethercomputer/RedPajama-Data-1T-Sample"
7
+ dataset_name_hub: "togethercomputer/RedPajama-Data-1T-Sample"
8
+ # max_train_samples: 1000
9
+ # max_eval_samples: 10
10
+ do_train: True
11
+ do_eval: True
12
+ output_dir: "/home/dshteyma/target_draft_coupling_code/target_draft_training/training_outputs"
13
+ overwrite_output_dir: True
14
+ per_device_train_batch_size: 4
15
+ gradient_accumulation_steps: 3
16
+ report_to: "tensorboard"
17
+ logging_dir: "/home/dshteyma/target_draft_coupling_code/target_draft_training/training_outputs"
18
+ logging_steps: 10000
19
+ save_steps: 10000
20
+ eval_strategy: "steps"
21
+ eval_steps: 10000
22
+ learning_rate: 0.0001
23
+ weight_decay: 0.01
24
+ warmup_ratio: 0.05
25
+ push_to_hub: False
26
+ hub_model_id: "DorinSht/llama_68M_redpajama"
27
+ hub_strategy: "all_checkpoints"
experiment_code/prepare_sharegpt.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This script is largely copied from the Vicuna repo: https://github.com/lm-sys/FastChat/blob/main/fastchat/data/split_long_conversation.py
3
+ We fixed a bug in `split_one_sample`, which previously includes long conversations in the processed data. Now we skip these long conversations.
4
+ """
5
+ import argparse
6
+ from concurrent.futures import ProcessPoolExecutor
7
+ import json
8
+ import transformers
9
+ from tqdm import tqdm
10
+
11
+ def shareGPT_pipeline(tokenizer, raw_datasets, overwrite_cache):
12
+
13
+ def preprocess_conversation(convo):
14
+ key_mapping = {"role" : "from", "content" : "value"}
15
+ value_mapping = {"user" : "user", "human" : "user", "gpt" : "assistant", 'system': 'assitant', 'bing': 'assitant', 'chatgpt': 'assitant', 'bard': 'assitant'}
16
+ # mapping = {"human" : "user", "gpt" : "assitant"}
17
+ if value_mapping[convo[0][key_mapping['role']]] != 'user':
18
+ convo = convo[1:]
19
+ preproc_convos_user = [{"role": 'user', "content": convo_elem[key_mapping['content']]} for i, convo_elem in enumerate(convo) if (i % 2 == 0 and value_mapping[convo_elem[key_mapping['role']]] == 'user')]
20
+ preproc_convos_assistant = [{"role": 'assistant', "content": convo_elem[key_mapping['content']]} for i, convo_elem in enumerate(convo) if (i % 2 == 1 and value_mapping[convo_elem[key_mapping['role']]] == 'assistant')]
21
+ if len(preproc_convos_user) != len(preproc_convos_assistant):
22
+ return []
23
+ preproc_convos = [conv_elem for pair in zip(preproc_convos_user, preproc_convos_assistant) for conv_elem in pair]
24
+ return preproc_convos
25
+
26
+ def filter_incorrect_conversations(examples):
27
+ convos = examples["conversations"]
28
+ ids_to_remove = [True if preprocess_conversation(convo) == [] else False for convo in convos]
29
+ return { "ids_to_remove" : ids_to_remove, }
30
+
31
+ def formatting_prompts_func(examples):
32
+ convos = examples["conversations"]
33
+ # preproc_convos = [convo for convo in convos if (convo[0]['from'] == 'human' or convo[0]['from'] == 'user')]
34
+ preproc_convos = [preprocess_conversation(convo) for convo in convos]
35
+ # preproc_convos2 = [preproc_convo for preproc_convo in preproc_convos if preproc_convo[0]['role'] == 'user']
36
+ texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for i, convo in enumerate(preproc_convos)]
37
+ return { "text" : texts,}
38
+
39
+ filtered_datasets = raw_datasets.filter(lambda example: example['conversations'] != [], load_from_cache_file=not overwrite_cache,)
40
+ dataset = filtered_datasets.map(filter_incorrect_conversations, batched = True, load_from_cache_file=not overwrite_cache,)
41
+ filtered_datasets2 = dataset.filter(lambda example: example['ids_to_remove'] == False, load_from_cache_file=not overwrite_cache,)
42
+ raw_datasets_preprocessed = filtered_datasets2.map(formatting_prompts_func, batched = True, load_from_cache_file=not overwrite_cache,)
43
+
44
+ return raw_datasets_preprocessed
experiment_code/requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ huggingface-hub==0.22.2
2
+ -e git+https://github.com/huggingface/transformers.git@bbaa8ceff696c479aecdb4575b2deb1349efd3aa#egg=transformers
experiment_code/run_clm.py ADDED
@@ -0,0 +1,754 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2020 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
18
+
19
+ Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
+ https://huggingface.co/models?filter=text-generation
21
+ """
22
+ # You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
23
+ import random
24
+ import logging
25
+ import math
26
+ import os
27
+ from datetime import datetime
28
+ import sys
29
+ import warnings
30
+ from dataclasses import dataclass, field
31
+ from itertools import chain
32
+ from typing import Optional
33
+ import datasets
34
+ import evaluate
35
+ import torch
36
+ from datasets import load_dataset
37
+ import argparse
38
+ import transformers
39
+ from prepare_sharegpt import shareGPT_pipeline
40
+ from transformers import (
41
+ CONFIG_MAPPING,
42
+ MODEL_FOR_CAUSAL_LM_MAPPING,
43
+ AutoConfig,
44
+ AutoModelForCausalLM,
45
+ AutoTokenizer,
46
+ HfArgumentParser,
47
+ Trainer,
48
+ TrainingArguments,
49
+ default_data_collator,
50
+ set_seed,
51
+ )
52
+ from transformers.testing_utils import CaptureLogger
53
+ from transformers.trainer_utils import get_last_checkpoint
54
+ from transformers.utils import check_min_version, send_example_telemetry
55
+ from transformers.utils.versions import require_version
56
+ from functools import partial
57
+
58
+ from omegaconf import DictConfig, OmegaConf
59
+ import hydra
60
+
61
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
62
+ check_min_version("4.41.0.dev0")
63
+
64
+ require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
65
+
66
+ logger = logging.getLogger(__name__)
67
+
68
+ MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
69
+ MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
70
+
71
+ random.seed(42)
72
+
73
+ @dataclass
74
+ class ModelArguments:
75
+ """
76
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
77
+ """
78
+
79
+ model_name_or_path: Optional[str] = field(
80
+ default=None,
81
+ metadata={
82
+ "help": (
83
+ "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
84
+ )
85
+ },
86
+ )
87
+ model_type: Optional[str] = field(
88
+ default=None,
89
+ metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
90
+ )
91
+ padding_side: str = field(
92
+ default="right", metadata={"help": "The padding side in tokenizer"}
93
+ )
94
+ config_overrides: Optional[str] = field(
95
+ default=None,
96
+ metadata={
97
+ "help": (
98
+ "Override some existing default config settings when a model is trained from scratch. Example: "
99
+ "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
100
+ )
101
+ },
102
+ )
103
+ config_name: Optional[str] = field(
104
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
105
+ )
106
+ tokenizer_name: Optional[str] = field(
107
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
108
+ )
109
+ cache_dir: Optional[str] = field(
110
+ default=None,
111
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
112
+ )
113
+ use_fast_tokenizer: bool = field(
114
+ default=True,
115
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
116
+ )
117
+ model_revision: str = field(
118
+ default="main",
119
+ metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
120
+ )
121
+ token: str = field(
122
+ default=None,
123
+ metadata={
124
+ "help": (
125
+ "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
126
+ "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
127
+ )
128
+ },
129
+ )
130
+ use_auth_token: bool = field(
131
+ default=None,
132
+ metadata={
133
+ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
134
+ },
135
+ )
136
+ trust_remote_code: bool = field(
137
+ default=True,
138
+ metadata={
139
+ "help": (
140
+ "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
141
+ "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
142
+ "execute code present on the Hub on your local machine."
143
+ )
144
+ },
145
+ )
146
+ torch_dtype: Optional[str] = field(
147
+ default=None,
148
+ metadata={
149
+ "help": (
150
+ "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
151
+ "dtype will be automatically derived from the model's weights."
152
+ ),
153
+ "choices": ["auto", "bfloat16", "float16", "float32"],
154
+ },
155
+ )
156
+ low_cpu_mem_usage: bool = field(
157
+ default=False,
158
+ metadata={
159
+ "help": (
160
+ "It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
161
+ "set True will benefit LLM loading time and RAM consumption."
162
+ )
163
+ },
164
+ )
165
+
166
+ def __post_init__(self):
167
+ if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
168
+ raise ValueError(
169
+ "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
170
+ )
171
+
172
+
173
+
174
+ @dataclass
175
+ class DataTrainingArguments:
176
+ """
177
+ Arguments pertaining to what data we are going to input our model for training and eval.
178
+ """
179
+ dataset_name: Optional[str] = field(
180
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
181
+ )
182
+ dataset_name_hub: Optional[str] = field(
183
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
184
+ )
185
+ dataset_name_local: Optional[str] = field(
186
+ default=None, metadata={"help": "The name of the dataset for identification."}
187
+ )
188
+ dataset_config_name: Optional[str] = field(
189
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
190
+ )
191
+ train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
192
+ validation_file: Optional[str] = field(
193
+ default=None,
194
+ metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
195
+ )
196
+ max_train_samples: Optional[int] = field(
197
+ default=None,
198
+ metadata={
199
+ "help": (
200
+ "For debugging purposes or quicker training, truncate the number of training examples to this "
201
+ "value if set."
202
+ )
203
+ },
204
+ )
205
+ max_eval_samples: Optional[int] = field(
206
+ default=None,
207
+ metadata={
208
+ "help": (
209
+ "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
210
+ "value if set."
211
+ )
212
+ },
213
+ )
214
+ streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
215
+ block_size: Optional[int] = field(
216
+ default=None,
217
+ metadata={
218
+ "help": (
219
+ "Optional input sequence length after tokenization. "
220
+ "The training dataset will be truncated in block of this size for training. "
221
+ "Default to the model max input length for single sentence inputs (take into account special tokens)."
222
+ )
223
+ },
224
+ )
225
+ overwrite_cache: bool = field(
226
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
227
+ )
228
+ validation_split_percentage: Optional[int] = field(
229
+ default=5,
230
+ metadata={
231
+ "help": "The percentage of the train set used as validation set in case there's no validation split"
232
+ },
233
+ )
234
+ preprocessing_num_workers: Optional[int] = field(
235
+ default=None,
236
+ metadata={"help": "The number of processes to use for the preprocessing."},
237
+ )
238
+ keep_linebreaks: bool = field(
239
+ default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
240
+ )
241
+ lazy_preprocess: bool = False
242
+
243
+ def __post_init__(self):
244
+ if self.streaming:
245
+ require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")
246
+
247
+ if self.dataset_name is None and self.train_file is None and self.validation_file is None:
248
+ raise ValueError("Need either a dataset name or a training/validation file.")
249
+ else:
250
+ if self.train_file is not None:
251
+ extension = self.train_file.split(".")[-1]
252
+ assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
253
+ if self.validation_file is not None:
254
+ extension = self.validation_file.split(".")[-1]
255
+ assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
256
+
257
+ # @dataclass
258
+ # class TrainingArguments(transformers.TrainingArguments):
259
+ # cache_dir: Optional[str] = field(default=None)
260
+ # optim: str = field(default="adamw_torch")
261
+ # model_max_length: int = field(
262
+ # default=2048,
263
+ # metadata={
264
+ # "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
265
+ # },
266
+ # )
267
+
268
+ def create_output_directory(dir_root_path):
269
+ # Get the current date and time
270
+ current_time = datetime.now()
271
+ # Format the date and time as a string
272
+ # Example format: YYYYMMDD_HHMMSS
273
+ formatted_time = current_time.strftime("%Y%m%d_%H%M%S")
274
+ # Define the directory name with the formatted time
275
+ directory_full_path = os.path.join(dir_root_path, f"training_outputs_{formatted_time}")
276
+ # Create the directory
277
+ os.makedirs(directory_full_path)
278
+ print(f"Directory '{directory_full_path}' created successfully.")
279
+ return directory_full_path
280
+
281
+ def main():
282
+ # See all possible arguments in src/transformers/training_args.py
283
+ # or by passing the --help flag to this script.
284
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
285
+ parser = argparse.ArgumentParser(description="parser for arguments from .py script call")
286
+ parser.add_argument('--output_dir', type=str, help='Path for training_args.output_dir')
287
+ parser.add_argument('--logging_dir', type=str, help='Path for training_args.logging_dir')
288
+ parser.add_argument('--config_file', type=str, help='An additional required option.')
289
+ args = parser.parse_args()
290
+
291
+ parser_hf = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
292
+ if args.config_file is not None and args.output_dir is not None and args.output_dir is not None:
293
+ # If we pass only one argument to the script and it's the path to a json file,
294
+ # let's parse it to get our arguments.
295
+ model_args, data_args, training_args = parser_hf.parse_yaml_file(args.config_file)
296
+ training_args.output_dir = args.output_dir
297
+ training_args.logging_dir = args.logging_dir
298
+ else:
299
+ # use the preset config file defined in the slurm .sh script
300
+ # model_args, data_args, training_args = parser_hf.parse_yaml_file(os.getenv("DEFAULT_CONFIG_FILE"))
301
+ model_args, data_args, training_args = parser_hf.parse_yaml_file('./config/config1.yaml')
302
+
303
+
304
+ if model_args.use_auth_token is not None:
305
+ warnings.warn(
306
+ "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
307
+ FutureWarning,
308
+ )
309
+ if model_args.token is not None:
310
+ raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
311
+ model_args.token = model_args.use_auth_token
312
+
313
+ # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
314
+ # information sent is the one passed as arguments along with your Python/PyTorch versions.
315
+ send_example_telemetry("run_clm", model_args, data_args)
316
+
317
+ # Setup logging
318
+ logging.basicConfig(
319
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
320
+ datefmt="%m/%d/%Y %H:%M:%S",
321
+ handlers=[logging.StreamHandler(sys.stdout)],
322
+ )
323
+
324
+ if training_args.should_log:
325
+ # The default of training_args.log_level is passive, so we set log level at info here to have that default.
326
+ transformers.utils.logging.set_verbosity_info()
327
+
328
+ log_level = training_args.get_process_log_level()
329
+ logger.setLevel(log_level)
330
+ datasets.utils.logging.set_verbosity(log_level)
331
+ transformers.utils.logging.set_verbosity(log_level)
332
+ transformers.utils.logging.enable_default_handler()
333
+ transformers.utils.logging.enable_explicit_format()
334
+
335
+ # Log on each process the small summary:
336
+ logger.warning(
337
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
338
+ + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
339
+ )
340
+ logger.info(f"Training/evaluation parameters {training_args}")
341
+
342
+ # Detecting last checkpoint.
343
+ last_checkpoint = None
344
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
345
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
346
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
347
+ raise ValueError(
348
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
349
+ "Use --overwrite_output_dir to overcome."
350
+ )
351
+ elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
352
+ logger.info(
353
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
354
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
355
+ )
356
+
357
+ # Set seed before initializing model.
358
+ set_seed(training_args.seed)
359
+
360
+ # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
361
+ # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
362
+ # (the dataset will be downloaded automatically from the datasets Hub).
363
+ #
364
+ # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
365
+ # 'text' is found. You can easily tweak this behavior (see below).
366
+ #
367
+ # In distributed training, the load_dataset function guarantee that only one local process can concurrently
368
+ # download the dataset.
369
+ if data_args.dataset_name is not None:
370
+ # Downloading and loading a dataset from the hub.
371
+ raw_datasets = load_dataset(
372
+ data_args.dataset_name,
373
+ data_args.dataset_config_name,
374
+ cache_dir=model_args.cache_dir,
375
+ token=model_args.token,
376
+ streaming=data_args.streaming,
377
+ )
378
+ if "validation" not in raw_datasets.keys():
379
+ raw_datasets["validation"] = load_dataset(
380
+ data_args.dataset_name,
381
+ data_args.dataset_config_name,
382
+ split=f"train[:{data_args.validation_split_percentage}%]",
383
+ cache_dir=model_args.cache_dir,
384
+ token=model_args.token,
385
+ streaming=data_args.streaming,
386
+ )
387
+ raw_datasets["train"] = load_dataset(
388
+ data_args.dataset_name,
389
+ data_args.dataset_config_name,
390
+ split=f"train[{data_args.validation_split_percentage}%:]",
391
+ cache_dir=model_args.cache_dir,
392
+ token=model_args.token,
393
+ streaming=data_args.streaming,
394
+ )
395
+ else:
396
+ data_files = {}
397
+ dataset_args = {}
398
+ if data_args.train_file is not None:
399
+ data_files["train"] = data_args.train_file
400
+ if data_args.validation_file is not None:
401
+ data_files["validation"] = data_args.validation_file
402
+ extension = (
403
+ data_args.train_file.split(".")[-1]
404
+ if data_args.train_file is not None
405
+ else data_args.validation_file.split(".")[-1]
406
+ )
407
+ if extension == "txt":
408
+ extension = "text"
409
+ dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
410
+ raw_datasets = load_dataset(
411
+ extension,
412
+ data_files=data_files,
413
+ cache_dir=model_args.cache_dir,
414
+ token=model_args.token,
415
+ **dataset_args,
416
+ )
417
+ # If no validation data is there, validation_split_percentage will be used to divide the dataset.
418
+ if "validation" not in raw_datasets.keys():
419
+ raw_datasets["validation"] = load_dataset(
420
+ extension,
421
+ data_files=data_files,
422
+ split=f"train[:{data_args.validation_split_percentage}%]",
423
+ cache_dir=model_args.cache_dir,
424
+ token=model_args.token,
425
+ **dataset_args,
426
+ )
427
+ raw_datasets["train"] = load_dataset(
428
+ extension,
429
+ data_files=data_files,
430
+ split=f"train[{data_args.validation_split_percentage}%:]",
431
+ cache_dir=model_args.cache_dir,
432
+ token=model_args.token,
433
+ **dataset_args,
434
+ )
435
+
436
+ # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
437
+ # https://huggingface.co/docs/datasets/loading_datasets.
438
+
439
+ # Load pretrained model and tokenizer
440
+ #
441
+ # Distributed training:
442
+ # The .from_pretrained methods guarantee that only one local process can concurrently
443
+ # download model & vocab.
444
+
445
+ config_kwargs = {
446
+ "cache_dir": model_args.cache_dir,
447
+ "revision": model_args.model_revision,
448
+ "token": model_args.token,
449
+ "trust_remote_code": model_args.trust_remote_code,
450
+ }
451
+ if model_args.config_name:
452
+ config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
453
+ elif model_args.model_name_or_path:
454
+ config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
455
+ else:
456
+ config = CONFIG_MAPPING[model_args.model_type]()
457
+ logger.warning("You are instantiating a new config instance from scratch.")
458
+ if model_args.config_overrides is not None:
459
+ logger.info(f"Overriding config: {model_args.config_overrides}")
460
+ config.update_from_string(model_args.config_overrides)
461
+ logger.info(f"New config: {config}")
462
+
463
+ tokenizer_kwargs = {
464
+ "cache_dir": model_args.cache_dir,
465
+ "use_fast": model_args.use_fast_tokenizer,
466
+ "revision": model_args.model_revision,
467
+ "token": model_args.token,
468
+ "padding": 'max_length',
469
+ "trust_remote_code": model_args.trust_remote_code,
470
+ "model_max_length": config.max_position_embeddings,
471
+ "return_tensors":'pt'
472
+ }
473
+ if model_args.tokenizer_name:
474
+ tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
475
+ elif model_args.model_name_or_path:
476
+ tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
477
+ else:
478
+ raise ValueError(
479
+ "You are instantiating a new tokenizer from scratch. This is not supported by this script. "
480
+ "You can do it from another script, save it, and load it from here, using --tokenizer_name."
481
+ )
482
+ if tokenizer.pad_token != tokenizer.unk_token:
483
+ tokenizer.pad_token = tokenizer.unk_token
484
+
485
+ if model_args.model_name_or_path:
486
+ torch_dtype = (
487
+ model_args.torch_dtype
488
+ if model_args.torch_dtype in ["auto", None]
489
+ else getattr(torch, model_args.torch_dtype)
490
+ )
491
+ model = AutoModelForCausalLM.from_pretrained(
492
+ model_args.model_name_or_path,
493
+ from_tf=bool(".ckpt" in model_args.model_name_or_path),
494
+ config=config,
495
+ cache_dir=model_args.cache_dir,
496
+ revision=model_args.model_revision,
497
+ token=model_args.token,
498
+ trust_remote_code=model_args.trust_remote_code,
499
+ torch_dtype=torch_dtype,
500
+ low_cpu_mem_usage=model_args.low_cpu_mem_usage,
501
+ )
502
+ else:
503
+ model = AutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code)
504
+ n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
505
+ logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
506
+
507
+ # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
508
+ # on a small vocab and want a smaller embedding size, remove this test.
509
+ embedding_size = model.get_input_embeddings().weight.shape[0]
510
+ if len(tokenizer) > embedding_size:
511
+ model.resize_token_embeddings(len(tokenizer))
512
+
513
+ if "ShareGPT" == data_args.dataset_name_local:
514
+ raw_datasets_preprocessed = shareGPT_pipeline(tokenizer=tokenizer, raw_datasets=raw_datasets, overwrite_cache=data_args.overwrite_cache)
515
+ if "RedPajama" == data_args.dataset_name_local:
516
+ raw_datasets_preprocessed = raw_datasets
517
+
518
+ ### HEREE
519
+ # Preprocessing the datasets.
520
+ # First we tokenize all the texts.
521
+ if training_args.do_train:
522
+ column_names = list(raw_datasets_preprocessed["train"].features)
523
+ else:
524
+ column_names = list(raw_datasets_preprocessed["validation"].features)
525
+ text_column_name = "text"
526
+
527
+
528
+ # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
529
+ tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
530
+
531
+ def tokenize_function(examples):
532
+ with CaptureLogger(tok_logger) as cl:
533
+ # print(tokenizer(examples[text_column_name]))
534
+ # output = tokenizer(examples[text_column_name])
535
+ output = tokenizer(
536
+ examples[text_column_name],
537
+ return_tensors="pt",
538
+ padding="max_length",
539
+ max_length=tokenizer.model_max_length,
540
+ truncation=True,
541
+ )
542
+ # output = input_ids.clone()
543
+ # clm input could be much much longer than block_size
544
+ if "Token indices sequence length is longer than the" in cl.out:
545
+ tok_logger.warning(
546
+ "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
547
+ " before being passed to the model."
548
+ )
549
+ return output
550
+
551
+ with training_args.main_process_first(desc="dataset map tokenization"):
552
+ if not data_args.streaming:
553
+ tokenized_datasets = raw_datasets_preprocessed.map(
554
+ tokenize_function,
555
+ batched=True,
556
+ num_proc=data_args.preprocessing_num_workers,
557
+ remove_columns=column_names,
558
+ load_from_cache_file=not data_args.overwrite_cache,
559
+ desc="Running tokenizer on dataset",
560
+ )
561
+ else:
562
+ tokenized_datasets = raw_datasets_preprocessed.map(
563
+ tokenize_function,
564
+ batched=True,
565
+ remove_columns=column_names,
566
+ load_from_cache_file=not data_args.overwrite_cache,
567
+ )
568
+ if hasattr(config, "max_position_embeddings"):
569
+ max_pos_embeddings = config.max_position_embeddings
570
+ else:
571
+ # Define a default value if the attribute is missing in the config.
572
+ max_pos_embeddings = 1024
573
+
574
+ if data_args.block_size is None:
575
+ block_size = tokenizer.model_max_length
576
+ if block_size > max_pos_embeddings:
577
+ logger.warning(
578
+ f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
579
+ f"Using block_size={min(1024, max_pos_embeddings)} instead. You can change that default value by passing --block_size xxx."
580
+ )
581
+ if max_pos_embeddings > 0:
582
+ block_size = min(1024, max_pos_embeddings)
583
+ else:
584
+ block_size = 1024
585
+ else:
586
+ if data_args.block_size > tokenizer.model_max_length:
587
+ logger.warning(
588
+ f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model "
589
+ f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
590
+ )
591
+ block_size = min(data_args.block_size, tokenizer.model_max_length)
592
+
593
+ # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
594
+ def group_texts(examples):
595
+ # Concatenate all texts.
596
+ concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
597
+ total_length = len(concatenated_examples[list(examples.keys())[0]])
598
+ # We drop the small remainder, and if the total_length < block_size we exclude this batch and return an empty dict.
599
+ # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
600
+ total_length = (total_length // block_size) * block_size
601
+ # Split by chunks of max_len.
602
+ result = {
603
+ k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
604
+ for k, t in concatenated_examples.items()
605
+ }
606
+ result["labels"] = result["input_ids"].copy()
607
+ return result
608
+
609
+ # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
610
+ # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
611
+ # to preprocess.
612
+ #
613
+ # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
614
+ # https://huggingface.co/docs/datasets/process#map
615
+
616
+ with training_args.main_process_first(desc="grouping texts together"):
617
+ if not data_args.streaming:
618
+ lm_datasets = tokenized_datasets.map(
619
+ group_texts,
620
+ batched=True,
621
+ num_proc=data_args.preprocessing_num_workers,
622
+ load_from_cache_file=not data_args.overwrite_cache,
623
+ desc=f"Grouping texts in chunks of {block_size}",
624
+ )
625
+ else:
626
+ lm_datasets = tokenized_datasets.map(
627
+ group_texts,
628
+ batched=True,
629
+ load_from_cache_file=not data_args.overwrite_cache,
630
+ )
631
+
632
+ if training_args.do_train:
633
+ if "train" not in tokenized_datasets:
634
+ raise ValueError("--do_train requires a train dataset")
635
+ train_dataset = lm_datasets["train"]
636
+ if data_args.max_train_samples is not None:
637
+ max_train_samples = min(len(train_dataset), data_args.max_train_samples)
638
+ train_dataset = train_dataset.select(range(max_train_samples))
639
+
640
+ if training_args.do_eval:
641
+ if "validation" not in tokenized_datasets:
642
+ raise ValueError("--do_eval requires a validation dataset")
643
+ eval_dataset = lm_datasets["validation"]
644
+ if data_args.max_eval_samples is not None:
645
+ max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
646
+ eval_dataset = eval_dataset.select(range(max_eval_samples))
647
+
648
+ def preprocess_logits_for_metrics(logits, labels):
649
+ if isinstance(logits, tuple):
650
+ # Depending on the model and config, logits may contain extra tensors,
651
+ # like past_key_values, but logits always come first
652
+ logits = logits[0]
653
+ return logits.argmax(dim=-1)
654
+
655
+
656
+ def compute_metrics(eval_preds):
657
+ accuracy = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
658
+ perplexity = evaluate.load("perplexity", module_type="metric")
659
+ preds, labels = eval_preds
660
+ # preds have the same shape as the labels, after the argmax(-1) has been calculated
661
+ # by preprocess_logits_for_metrics but we need to shift the labels
662
+ labels = labels[:, 1:].reshape(-1)
663
+ preds = preds[:, :-1].reshape(-1)
664
+ accuracy = accuracy.compute(predictions=preds, references=labels)
665
+ # perplexity = perplexity.compute(predictions=preds, model_id='llama')
666
+ return accuracy
667
+
668
+ # Initialize the optimizer
669
+ optimizer = torch.optim.AdamW(model.parameters(), lr=training_args.learning_rate, weight_decay=training_args.weight_decay)
670
+ # Calculate the number of training steps
671
+ train_steps = (len(train_dataset) // (training_args.per_device_train_batch_size * training_args._n_gpu)) * training_args.num_train_epochs
672
+
673
+ # Initialize the scheduler
674
+ linear_scheduler = transformers.get_linear_schedule_with_warmup(
675
+ optimizer,
676
+ num_warmup_steps=train_steps*training_args.warmup_ratio,
677
+ num_training_steps=train_steps
678
+ )
679
+
680
+ # Initialize our Trainer
681
+ trainer = Trainer(
682
+ model=model,
683
+ args=training_args,
684
+ train_dataset=train_dataset if training_args.do_train else None,
685
+ eval_dataset=eval_dataset if training_args.do_eval else None,
686
+ tokenizer=tokenizer,
687
+ optimizers=(optimizer, linear_scheduler),
688
+ # Data collator will default to DataCollatorWithPadding, so we change it.
689
+ data_collator=default_data_collator,
690
+ compute_metrics=compute_metrics if training_args.do_eval else None,
691
+ preprocess_logits_for_metrics=preprocess_logits_for_metrics
692
+ if training_args.do_eval else None,
693
+ )
694
+
695
+ # Training
696
+ if training_args.do_train:
697
+ checkpoint = None
698
+ if training_args.resume_from_checkpoint is not None:
699
+ checkpoint = training_args.resume_from_checkpoint
700
+ elif last_checkpoint is not None:
701
+ checkpoint = last_checkpoint
702
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
703
+ trainer.save_model() # Saves the tokenizer too for easy upload
704
+
705
+ metrics = train_result.metrics
706
+
707
+ max_train_samples = (
708
+ data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
709
+ )
710
+ metrics["train_samples"] = min(max_train_samples, len(train_dataset))
711
+
712
+ trainer.log_metrics("train", metrics)
713
+ trainer.save_metrics("train", metrics)
714
+ trainer.save_state()
715
+ try:
716
+ torch.save([vars(a) for a in [training_args, data_args, model_args]], os.path.join(training_args.output_dir, "args.bin"))
717
+ except:
718
+ logger.info("Failed to save arguments")
719
+
720
+ # Evaluation
721
+ if training_args.do_eval:
722
+ logger.info("*** Evaluate ***")
723
+
724
+ metrics = trainer.evaluate()
725
+
726
+ max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
727
+ metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
728
+ try:
729
+ perplexity = math.exp(metrics["eval_loss"])
730
+ except OverflowError:
731
+ perplexity = float("inf")
732
+ metrics["perplexity"] = perplexity
733
+
734
+ trainer.log_metrics("eval", metrics)
735
+ trainer.save_metrics("eval", metrics)
736
+
737
+ kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
738
+ if data_args.dataset_name is not None:
739
+ kwargs["dataset_tags"] = data_args.dataset_name
740
+ if data_args.dataset_config_name is not None:
741
+ kwargs["dataset_args"] = data_args.dataset_config_name
742
+ kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
743
+ else:
744
+ kwargs["dataset"] = data_args.dataset_name
745
+ elif data_args.dataset_name_hub is not None:
746
+ kwargs["dataset"] = data_args.dataset_name_hub
747
+
748
+ if training_args.push_to_hub:
749
+ trainer.push_to_hub(**kwargs)
750
+ else:
751
+ trainer.create_model_card(**kwargs)
752
+
753
+ if __name__ == "__main__":
754
+ main()
experiment_code/submit_job.sh ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH -p g48
3
+ #SBATCH --job-name=myjob_shareGPT
4
+ #SBATCH --qos=high
5
+ #SBATCH --nodes=1 # Number of nodes
6
+ #SBATCH --ntasks=1 # Number of tasks (one for each script)
7
+ #SBATCH --cpus-per-task=60
8
+ #SBATCH --gres=gpu:6
9
+ #SBATCH --array=1-2 # Array range
10
+ # #SBATCH --output=./slurm_outputs/run_clm_job_%A_task_%a.out # Standard output
11
+ #SBATCH --output=/dev/null # Discard standard output # Because we write to the log.txt file
12
+
13
+ # # Get the current date and time
14
+ current_time=$(date +"%d-%m_%H-%M")
15
+ OUTPUT_DIR="./training_outputs_job_${SLURM_ARRAY_JOB_ID}_${SLURM_ARRAY_TASK_ID}_${current_time}"
16
+
17
+ while test $# -gt 0; do
18
+ echo $1
19
+ case "$1" in
20
+ --output_dir)
21
+ shift
22
+ OUTPUT_DIR=$1
23
+ shift
24
+ ;;
25
+ esac
26
+ done
27
+
28
+ mkdir_is_exists() {
29
+ if [ -d "$1" ]; then
30
+ echo "Directory '$1' already exists."
31
+ else
32
+ mkdir -p "$1"
33
+ echo "Directory '$1' created."
34
+ fi
35
+ }
36
+
37
+
38
+ mkdir_is_exists $OUTPUT_DIR
39
+ mkdir_is_exists $OUTPUT_DIR/experiment_code
40
+ git log -n 1 > $OUTPUT_DIR/commit.txt
41
+ pip freeze > $OUTPUT_DIR/pip_freeze.txt
42
+ echo $0 $ARGS $current_time > $OUTPUT_DIR/cmd.txt
43
+ cp -r ./run_clm.py $OUTPUT_DIR/experiment_code
44
+ cp -r ./prepare_sharegpt.py $OUTPUT_DIR/experiment_code
45
+ cp -r config $OUTPUT_DIR/experiment_code
46
+ cp -r ./submit_job.sh $OUTPUT_DIR/experiment_code
47
+ cp -r ./requirements.txt $OUTPUT_DIR/experiment_code
48
+
49
+ # Define the Python scripts and their corresponding input files
50
+ declare -A scripts_and_inputs=(
51
+ ["1"]="./config/config1.yaml"
52
+ ["2"]="./config/config_redpajama.yaml"
53
+ # ["3"]="./config/config1.yaml"
54
+ # ["4"]="./config/config1.yaml"
55
+ # ["5"]="./config/config1.yaml"
56
+ # ["6"]="./config/config1.yaml"
57
+ # ["7"]="./config/config1.yaml"
58
+ # ["8"]="./config/config1.yaml"
59
+ # ["9"]="./config/config1.yaml"
60
+ # ["10"]="./config/config1.yaml"
61
+ # ["11"]="./config/config1.yaml"
62
+ # ["12"]="./config/config1.yaml"
63
+ # ["13"]="./config/config1.yaml"
64
+ # ["14"]="./config/config1.yaml"
65
+ # ["15"]="./config/config1.yaml"
66
+ # ["16"]="./config/config1.yaml"
67
+ # ["17"]="./config/config1.yaml"
68
+ # ["18"]="./config/config1.yaml"
69
+ # ["19"]="./config/config1.yaml"
70
+ # ["20"]="./config/config1.yaml"
71
+ )
72
+
73
+ # Launch each script with its corresponding input file as a separate task
74
+ echo "Starting job array task: $SLURM_ARRAY_TASK_ID"
75
+
76
+ INPUT_DIR="${scripts_and_inputs[$SLURM_ARRAY_TASK_ID]}"
77
+ export DEFAULT_CONFIG_FILE="./config/config1.yaml"
78
+ srun --exclusive python run_clm.py --output_dir $OUTPUT_DIR --logging_dir $OUTPUT_DIR --config_file $INPUT_DIR 2>&1 | tee $OUTPUT_DIR/log.txt
79
+
80
+
81
+ # Wait for all background jobs to complete
82
+ wait
83
+
84
+ # Print a message indicating completion
85
+ echo "All Python scripts have been executed."
86
+
87
+
88
+ # mv ./slurm_outputs/run_clm_job_$SLURM_ARRAY_JOB_ID*$SLURM_ARRAY_TASK_ID* "$output_dir/"
89
+
90
+
91
+ # python -m torch.distributed.launch ~/target_draft_coupling_code/target_draft_training/run_clm.py --multirun task=1,2
log.txt ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/11346 [00:00<?, ?it/s]/home/dshteyma/miniconda3/lib/python3.9/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.
 
 
1
  0%| | 1/11346 [00:04<15:05:26, 4.79s/it]
2
  0%| | 2/11346 [00:06<9:21:06, 2.97s/it]
3
  0%| | 3/11346 [00:08<7:30:15, 2.38s/it]
4
  0%| | 4/11346 [00:09<6:37:25, 2.10s/it]
5
  0%| | 5/11346 [00:11<6:07:24, 1.94s/it]
6
  0%| | 6/11346 [00:13<5:48:09, 1.84s/it]
7
  0%| | 7/11346 [00:14<5:35:53, 1.78s/it]
8
  0%| | 8/11346 [00:16<5:30:15, 1.75s/it]
9
  0%| | 9/11346 [00:18<5:24:26, 1.72s/it]
10
  0%| | 10/11346 [00:19<5:20:12, 1.69s/it]
11
  0%| | 11/11346 [00:21<5:19:03, 1.69s/it]
12
  0%| | 12/11346 [00:23<5:16:19, 1.67s/it]
13
  0%| | 13/11346 [00:24<5:14:47, 1.67s/it]
14
  0%| | 14/11346 [00:26<5:15:45, 1.67s/it]
15
  0%| | 15/11346 [00:28<5:15:55, 1.67s/it]
16
  0%| | 16/11346 [00:29<5:16:01, 1.67s/it]
17
  0%| | 17/11346 [00:31<5:14:59, 1.67s/it]
18
  0%| | 18/11346 [00:33<5:13:43, 1.66s/it]
19
  0%| | 19/11346 [00:34<5:12:42, 1.66s/it]
20
  0%| | 20/11346 [00:36<5:11:52, 1.65s/it]
21
  0%| | 21/11346 [00:37<5:11:11, 1.65s/it]
22
  0%| | 22/11346 [00:39<5:10:54, 1.65s/it]
23
  0%| | 23/11346 [00:41<5:10:37, 1.65s/it]
24
  0%| | 24/11346 [00:42<5:10:31, 1.65s/it]
25
  0%| | 25/11346 [00:44<5:10:24, 1.65s/it]
26
  0%| | 26/11346 [00:46<5:10:12, 1.64s/it]
27
  0%| | 27/11346 [00:47<5:11:36, 1.65s/it]
28
  0%| | 28/11346 [00:49<5:11:16, 1.65s/it]
29
  0%| | 29/11346 [00:51<5:10:53, 1.65s/it]
30
  0%| | 30/11346 [00:52<5:10:39, 1.65s/it]
31
  0%| | 31/11346 [00:54<5:10:26, 1.65s/it]
32
  0%| | 32/11346 [00:56<5:10:17, 1.65s/it]
33
  0%| | 33/11346 [00:57<5:10:09, 1.64s/it]
34
  0%| | 34/11346 [00:59<5:10:07, 1.64s/it]
35
  0%| | 35/11346 [01:01<5:09:56, 1.64s/it]
36
  0%| | 36/11346 [01:02<5:09:53, 1.64s/it]
37
  0%| | 37/11346 [01:04<5:09:51, 1.64s/it]
38
  0%| | 38/11346 [01:05<5:09:44, 1.64s/it]
39
  0%| | 39/11346 [01:07<5:09:40, 1.64s/it]
40
  0%| | 40/11346 [01:09<5:09:35, 1.64s/it]
41
  0%| | 41/11346 [01:10<5:09:32, 1.64s/it]
42
  0%| | 42/11346 [01:12<5:09:25, 1.64s/it]
43
  0%| | 43/11346 [01:14<5:09:27, 1.64s/it]
44
  0%| | 44/11346 [01:15<5:09:44, 1.64s/it]
45
  0%| | 45/11346 [01:17<5:09:45, 1.64s/it]
46
  0%| | 46/11346 [01:19<5:09:40, 1.64s/it]
47
  0%| | 47/11346 [01:20<5:09:36, 1.64s/it]
48
  0%| | 48/11346 [01:22<5:09:32, 1.64s/it]
49
  0%| | 49/11346 [01:24<5:09:30, 1.64s/it]
50
  0%| | 50/11346 [01:25<5:09:30, 1.64s/it]
51
  0%| | 51/11346 [01:27<5:09:30, 1.64s/it]
52
  0%| | 52/11346 [01:28<5:09:24, 1.64s/it]
53
  0%| | 53/11346 [01:30<5:09:22, 1.64s/it]
54
  0%| | 54/11346 [01:32<5:09:22, 1.64s/it]
55
  0%| | 55/11346 [01:33<5:09:26, 1.64s/it]
56
  0%| | 56/11346 [01:35<5:09:35, 1.65s/it]
57
  1%| | 57/11346 [01:37<5:09:41, 1.65s/it]
58
  1%| | 58/11346 [01:38<5:09:36, 1.65s/it]
59
  1%| | 59/11346 [01:40<5:09:28, 1.65s/it]
60
  1%| | 60/11346 [01:42<5:09:21, 1.64s/it]
61
  1%| | 61/11346 [01:43<5:09:45, 1.65s/it]
62
  1%| | 62/11346 [01:45<5:09:30, 1.65s/it]
63
  1%| | 63/11346 [01:47<5:09:21, 1.65s/it]
64
  1%| | 64/11346 [01:48<5:09:16, 1.64s/it]
65
  1%| | 65/11346 [01:50<5:09:11, 1.64s/it]
66
  1%| | 66/11346 [01:52<5:09:06, 1.64s/it]
67
  1%| | 67/11346 [01:53<5:09:05, 1.64s/it]
68
  1%| | 68/11346 [01:55<5:10:50, 1.65s/it]
69
  1%| | 69/11346 [01:57<5:11:57, 1.66s/it]
70
  1%| | 70/11346 [01:58<5:11:27, 1.66s/it]
71
  1%| | 71/11346 [02:00<5:10:43, 1.65s/it]
72
  1%| | 72/11346 [02:01<5:10:09, 1.65s/it]
73
  1%| | 73/11346 [02:03<5:09:46, 1.65s/it]
74
  1%| | 74/11346 [02:05<5:09:27, 1.65s/it]
75
  1%| | 75/11346 [02:06<5:09:07, 1.65s/it]
76
  1%| | 76/11346 [02:08<5:08:57, 1.64s/it]
77
  1%| | 77/11346 [02:10<5:08:54, 1.64s/it]
78
  1%| | 78/11346 [02:11<5:08:52, 1.64s/it]
79
  1%| | 79/11346 [02:13<5:08:52, 1.64s/it]
80
  1%| | 80/11346 [02:15<5:08:52, 1.64s/it]
81
  1%| | 81/11346 [02:16<5:08:47, 1.64s/it]
82
  1%| | 82/11346 [02:18<5:08:40, 1.64s/it]
83
  1%| | 83/11346 [02:20<5:08:40, 1.64s/it]
84
  1%| | 84/11346 [02:21<5:08:33, 1.64s/it]
85
  1%| | 85/11346 [02:23<5:08:32, 1.64s/it]
86
  1%| | 86/11346 [02:25<5:12:04, 1.66s/it]
87
  1%| | 87/11346 [02:26<5:13:39, 1.67s/it]
88
  1%| | 88/11346 [02:28<5:15:04, 1.68s/it]
89
  1%| | 89/11346 [02:30<5:14:52, 1.68s/it]
90
  1%| | 90/11346 [02:31<5:15:18, 1.68s/it]
91
  1%| | 91/11346 [02:33<5:15:25, 1.68s/it]
92
  1%| | 92/11346 [02:35<5:16:00, 1.68s/it]
93
  1%| | 93/11346 [02:36<5:16:22, 1.69s/it]
94
  1%| | 94/11346 [02:38<5:15:59, 1.68s/it]
95
  1%| | 95/11346 [02:40<5:16:37, 1.69s/it]
96
  1%| | 96/11346 [02:41<5:16:52, 1.69s/it]
97
  1%| | 97/11346 [02:43<5:16:53, 1.69s/it]
98
  1%| | 98/11346 [02:45<5:16:50, 1.69s/it]
99
  1%| | 99/11346 [02:46<5:16:42, 1.69s/it]
100
  1%| | 100/11346 [02:48<5:16:32, 1.69s/it]
101
  1%| | 101/11346 [02:50<5:16:02, 1.69s/it]
102
  1%| | 102/11346 [02:52<5:16:21, 1.69s/it]
103
  1%| | 103/11346 [02:53<5:16:22, 1.69s/it]
104
  1%| | 104/11346 [02:55<5:16:56, 1.69s/it]
105
  1%| | 105/11346 [02:57<5:17:05, 1.69s/it]
106
  1%| | 106/11346 [02:58<5:16:58, 1.69s/it]
107
  1%| | 107/11346 [03:00<5:17:08, 1.69s/it]
108
  1%| | 108/11346 [03:02<5:17:07, 1.69s/it]
109
  1%| | 109/11346 [03:03<5:16:39, 1.69s/it]
110
  1%| | 110/11346 [03:05<5:16:25, 1.69s/it]
111
  1%| | 111/11346 [03:07<5:16:27, 1.69s/it]
112
  1%| | 112/11346 [03:08<5:16:08, 1.69s/it]
113
  1%| | 113/11346 [03:10<5:15:47, 1.69s/it]
114
  1%| | 114/11346 [03:12<5:15:59, 1.69s/it]
115
  1%| | 115/11346 [03:14<5:16:09, 1.69s/it]
116
  1%| | 116/11346 [03:15<5:15:54, 1.69s/it]
117
  1%| | 117/11346 [03:17<5:16:14, 1.69s/it]
118
  1%| | 118/11346 [03:19<5:16:21, 1.69s/it]
119
  1%| | 119/11346 [03:20<5:16:37, 1.69s/it]
120
  1%| | 120/11346 [03:22<5:15:42, 1.69s/it]
121
  1%| | 121/11346 [03:24<5:15:53, 1.69s/it]
122
  1%| | 122/11346 [03:25<5:15:52, 1.69s/it]
123
  1%| | 123/11346 [03:27<5:15:37, 1.69s/it]
124
  1%| | 124/11346 [03:29<5:15:21, 1.69s/it]
125
  1%| | 125/11346 [03:30<5:15:20, 1.69s/it]
126
  1%| | 126/11346 [03:32<5:15:08, 1.69s/it]
127
  1%| | 127/11346 [03:34<5:15:16, 1.69s/it]
128
  1%| | 128/11346 [03:35<5:15:28, 1.69s/it]
129
  1%| | 129/11346 [03:37<5:15:06, 1.69s/it]
130
  1%| | 130/11346 [03:39<5:15:41, 1.69s/it]
131
  1%| | 131/11346 [03:41<5:15:22, 1.69s/it]
132
  1%| | 132/11346 [03:42<5:15:06, 1.69s/it]
133
  1%| | 133/11346 [03:44<5:15:00, 1.69s/it]
134
  1%| | 134/11346 [03:46<5:15:08, 1.69s/it]
135
  1%| | 135/11346 [03:47<5:15:12, 1.69s/it]
136
  1%| | 136/11346 [03:49<5:14:45, 1.68s/it]
137
  1%| | 137/11346 [03:51<5:13:39, 1.68s/it]
138
  1%| | 138/11346 [03:52<5:13:47, 1.68s/it]
139
  1%| | 139/11346 [03:54<5:13:33, 1.68s/it]
140
  1%| | 140/11346 [03:56<5:13:47, 1.68s/it]
141
  1%| | 141/11346 [03:57<5:13:56, 1.68s/it]
142
  1%|▏ | 142/11346 [03:59<5:14:16, 1.68s/it]
143
  1%|▏ | 143/11346 [04:01<5:13:54, 1.68s/it]
144
  1%|▏ | 144/11346 [04:02<5:13:57, 1.68s/it]
145
  1%|▏ | 145/11346 [04:04<5:13:51, 1.68s/it]
146
  1%|▏ | 146/11346 [04:06<5:14:21, 1.68s/it]
147
  1%|▏ | 147/11346 [04:07<5:15:46, 1.69s/it]
148
  1%|▏ | 148/11346 [04:09<5:16:13, 1.69s/it]
149
  1%|▏ | 149/11346 [04:11<5:15:22, 1.69s/it]
150
  1%|▏ | 150/11346 [04:13<5:16:59, 1.70s/it]
151
  1%|▏ | 151/11346 [04:14<5:17:05, 1.70s/it]
152
  1%|▏ | 152/11346 [04:16<5:16:55, 1.70s/it]
153
  1%|▏ | 153/11346 [04:18<5:17:29, 1.70s/it]
154
  1%|▏ | 154/11346 [04:19<5:17:43, 1.70s/it]
155
  1%|▏ | 155/11346 [04:21<5:16:45, 1.70s/it]
156
  1%|▏ | 156/11346 [04:23<5:17:07, 1.70s/it]
157
  1%|▏ | 157/11346 [04:24<5:17:52, 1.70s/it]
158
  1%|▏ | 158/11346 [04:26<5:16:59, 1.70s/it]
159
  1%|▏ | 159/11346 [04:28<5:17:13, 1.70s/it]
160
  1%|▏ | 160/11346 [04:30<5:17:42, 1.70s/it]
161
  1%|▏ | 161/11346 [04:31<5:17:20, 1.70s/it]
162
  1%|▏ | 162/11346 [04:33<5:16:54, 1.70s/it]
163
  1%|▏ | 163/11346 [04:35<5:15:58, 1.70s/it]
164
  1%|▏ | 164/11346 [04:36<5:16:33, 1.70s/it]
165
  1%|▏ | 165/11346 [04:38<5:16:46, 1.70s/it]
166
  1%|▏ | 166/11346 [04:40<5:16:18, 1.70s/it]
167
  1%|▏ | 167/11346 [04:41<5:15:53, 1.70s/it]
168
  1%|▏ | 168/11346 [04:43<5:15:33, 1.69s/it]
169
  1%|▏ | 169/11346 [04:45<5:16:19, 1.70s/it]
170
  1%|▏ | 170/11346 [04:47<5:15:30, 1.69s/it]
171
  2%|▏ | 171/11346 [04:48<5:15:01, 1.69s/it]
172
  2%|▏ | 172/11346 [04:50<5:15:21, 1.69s/it]
173
  2%|▏ | 173/11346 [04:52<5:14:48, 1.69s/it]
174
  2%|▏ | 174/11346 [04:53<5:16:03, 1.70s/it]
175
  2%|▏ | 175/11346 [04:55<5:15:36, 1.70s/it]
176
  2%|▏ | 176/11346 [04:57<5:15:10, 1.69s/it]
177
  2%|▏ | 177/11346 [04:58<5:15:37, 1.70s/it]
178
  2%|▏ | 178/11346 [05:00<5:15:06, 1.69s/it]
179
  2%|▏ | 179/11346 [05:02<5:14:42, 1.69s/it]
180
  2%|▏ | 180/11346 [05:03<5:15:07, 1.69s/it]
181
  2%|▏ | 181/11346 [05:05<5:15:02, 1.69s/it]
182
  2%|▏ | 182/11346 [05:07<5:14:59, 1.69s/it]
183
  2%|▏ | 183/11346 [05:09<5:14:40, 1.69s/it]
184
  2%|▏ | 184/11346 [05:10<5:15:53, 1.70s/it]
185
  2%|▏ | 185/11346 [05:12<5:15:11, 1.69s/it]
186
  2%|▏ | 186/11346 [05:14<5:14:53, 1.69s/it]
187
  2%|▏ | 187/11346 [05:15<5:15:43, 1.70s/it]
188
  2%|▏ | 188/11346 [05:17<5:15:29, 1.70s/it]
189
  2%|▏ | 189/11346 [05:19<5:15:17, 1.70s/it]
190
  2%|▏ | 190/11346 [05:20<5:15:03, 1.69s/it]
191
  2%|▏ | 191/11346 [05:22<5:14:08, 1.69s/it]
192
  2%|▏ | 192/11346 [05:24<5:14:18, 1.69s/it]
193
  2%|▏ | 193/11346 [05:25<5:14:10, 1.69s/it]
194
  2%|▏ | 194/11346 [05:27<5:13:51, 1.69s/it]
195
  2%|▏ | 195/11346 [05:29<5:13:31, 1.69s/it]
196
  2%|▏ | 196/11346 [05:31<5:14:23, 1.69s/it]
197
  2%|▏ | 197/11346 [05:32<5:15:01, 1.70s/it]
198
  2%|▏ | 198/11346 [05:34<5:15:03, 1.70s/it]
199
  2%|▏ | 199/11346 [05:36<5:14:37, 1.69s/it]
200
  2%|▏ | 200/11346 [05:37<5:14:54, 1.70s/it]
201
  2%|▏ | 201/11346 [05:39<5:14:20, 1.69s/it]
202
  2%|▏ | 202/11346 [05:41<5:14:27, 1.69s/it]
203
  2%|▏ | 203/11346 [05:42<5:13:49, 1.69s/it]
204
  2%|▏ | 204/11346 [05:44<5:13:47, 1.69s/it]
205
  2%|▏ | 205/11346 [05:46<5:13:39, 1.69s/it]
206
  2%|▏ | 206/11346 [05:47<5:13:03, 1.69s/it]
207
  2%|▏ | 207/11346 [05:49<5:13:46, 1.69s/it]
208
  2%|▏ | 208/11346 [05:51<5:13:31, 1.69s/it]
209
  2%|▏ | 209/11346 [05:53<5:13:34, 1.69s/it]
210
  2%|▏ | 210/11346 [05:54<5:13:27, 1.69s/it]
211
  2%|▏ | 211/11346 [05:56<5:12:29, 1.68s/it]
212
  2%|▏ | 212/11346 [05:58<5:13:18, 1.69s/it]
213
  2%|▏ | 213/11346 [05:59<5:12:47, 1.69s/it]
214
  2%|▏ | 214/11346 [06:01<5:12:54, 1.69s/it]
215
  2%|▏ | 215/11346 [06:03<5:12:27, 1.68s/it]
216
  2%|▏ | 216/11346 [06:04<5:13:25, 1.69s/it]
217
  2%|▏ | 217/11346 [06:06<5:13:28, 1.69s/it]
218
  2%|▏ | 218/11346 [06:08<5:13:45, 1.69s/it]
219
  2%|▏ | 219/11346 [06:09<5:12:47, 1.69s/it]
220
  2%|▏ | 220/11346 [06:11<5:13:05, 1.69s/it]
221
  2%|▏ | 221/11346 [06:13<5:13:41, 1.69s/it]
222
  2%|▏ | 222/11346 [06:14<5:13:08, 1.69s/it]
223
  2%|▏ | 223/11346 [06:16<5:12:37, 1.69s/it]
224
  2%|▏ | 224/11346 [06:18<5:12:56, 1.69s/it]
225
  2%|▏ | 225/11346 [06:20<5:12:02, 1.68s/it]
226
  2%|▏ | 226/11346 [06:21<5:12:05, 1.68s/it]
227
  2%|▏ | 227/11346 [06:23<5:13:03, 1.69s/it]
228
  2%|▏ | 228/11346 [06:25<5:12:56, 1.69s/it]
229
  2%|▏ | 229/11346 [06:26<5:12:24, 1.69s/it]
230
  2%|▏ | 230/11346 [06:28<5:12:29, 1.69s/it]
231
  2%|▏ | 231/11346 [06:30<5:12:28, 1.69s/it]
232
  2%|▏ | 232/11346 [06:31<5:12:35, 1.69s/it]
233
  2%|▏ | 233/11346 [06:33<5:13:07, 1.69s/it]
234
  2%|▏ | 234/11346 [06:35<5:12:34, 1.69s/it]
235
  2%|▏ | 235/11346 [06:36<5:12:19, 1.69s/it]
236
  2%|▏ | 236/11346 [06:38<5:12:52, 1.69s/it]
237
  2%|▏ | 237/11346 [06:40<5:12:53, 1.69s/it]
238
  2%|▏ | 238/11346 [06:41<5:13:25, 1.69s/it]
239
  2%|▏ | 239/11346 [06:43<5:13:20, 1.69s/it]
240
  2%|▏ | 240/11346 [06:45<5:11:49, 1.68s/it]
241
  2%|▏ | 241/11346 [06:47<5:12:48, 1.69s/it]
242
  2%|▏ | 242/11346 [06:48<5:12:47, 1.69s/it]
243
  2%|▏ | 243/11346 [06:50<5:13:03, 1.69s/it]
244
  2%|▏ | 244/11346 [06:52<5:13:03, 1.69s/it]
245
  2%|▏ | 245/11346 [06:53<5:12:45, 1.69s/it]
246
  2%|▏ | 246/11346 [06:55<5:12:53, 1.69s/it]
247
  2%|▏ | 247/11346 [06:57<5:12:42, 1.69s/it]
248
  2%|▏ | 248/11346 [06:58<5:11:35, 1.68s/it]
249
  2%|▏ | 249/11346 [07:00<5:11:17, 1.68s/it]
250
  2%|▏ | 250/11346 [07:02<5:11:09, 1.68s/it]
251
  2%|▏ | 251/11346 [07:03<5:11:38, 1.69s/it]
252
  2%|▏ | 252/11346 [07:05<5:11:13, 1.68s/it]
253
  2%|▏ | 253/11346 [07:07<5:11:38, 1.69s/it]
254
  2%|▏ | 254/11346 [07:08<5:10:30, 1.68s/it]
255
  2%|▏ | 255/11346 [07:10<5:10:14, 1.68s/it]
256
  2%|▏ | 256/11346 [07:12<5:10:15, 1.68s/it]
257
  2%|▏ | 257/11346 [07:13<5:09:47, 1.68s/it]
258
  2%|▏ | 258/11346 [07:15<5:10:30, 1.68s/it]
259
  2%|▏ | 259/11346 [07:17<5:11:11, 1.68s/it]
260
  2%|▏ | 260/11346 [07:19<5:10:54, 1.68s/it]
261
  2%|▏ | 261/11346 [07:20<5:10:47, 1.68s/it]
262
  2%|▏ | 262/11346 [07:22<5:10:19, 1.68s/it]
263
  2%|▏ | 263/11346 [07:24<5:10:42, 1.68s/it]
264
  2%|▏ | 264/11346 [07:25<5:10:37, 1.68s/it]
265
  2%|▏ | 265/11346 [07:27<5:10:42, 1.68s/it]
266
  2%|▏ | 266/11346 [07:29<5:11:00, 1.68s/it]
267
  2%|▏ | 267/11346 [07:30<5:11:00, 1.68s/it]
268
  2%|▏ | 268/11346 [07:32<5:11:15, 1.69s/it]
269
  2%|▏ | 269/11346 [07:34<5:10:59, 1.68s/it]
270
  2%|▏ | 270/11346 [07:35<5:11:20, 1.69s/it]
271
  2%|▏ | 271/11346 [07:37<5:11:27, 1.69s/it]
272
  2%|▏ | 272/11346 [07:39<5:11:38, 1.69s/it]
273
  2%|▏ | 273/11346 [07:40<5:11:37, 1.69s/it]
274
  2%|▏ | 274/11346 [07:42<5:11:42, 1.69s/it]
275
  2%|▏ | 275/11346 [07:44<5:11:02, 1.69s/it]
276
  2%|▏ | 276/11346 [07:46<5:10:47, 1.68s/it]
277
  2%|▏ | 277/11346 [07:47<5:11:04, 1.69s/it]
278
  2%|▏ | 278/11346 [07:49<5:11:01, 1.69s/it]
279
  2%|▏ | 279/11346 [07:51<5:10:57, 1.69s/it]
280
  2%|▏ | 280/11346 [07:52<5:10:04, 1.68s/it]
281
  2%|▏ | 281/11346 [07:54<5:09:03, 1.68s/it]
282
  2%|▏ | 282/11346 [07:56<5:10:14, 1.68s/it]
283
  2%|▏ | 283/11346 [07:57<5:10:30, 1.68s/it]
284
  3%|▎ | 284/11346 [07:59<5:09:50, 1.68s/it]
285
  3%|▎ | 285/11346 [08:01<5:09:45, 1.68s/it]
286
  3%|▎ | 286/11346 [08:02<5:11:25, 1.69s/it]
287
  3%|▎ | 287/11346 [08:04<5:11:07, 1.69s/it]
288
  3%|▎ | 288/11346 [08:06<5:10:45, 1.69s/it]
289
  3%|▎ | 289/11346 [08:07<5:10:22, 1.68s/it]
290
  3%|▎ | 290/11346 [08:09<5:09:34, 1.68s/it]
291
  3%|▎ | 291/11346 [08:11<5:09:15, 1.68s/it]
292
  3%|▎ | 292/11346 [08:12<5:08:31, 1.67s/it]
293
  3%|▎ | 293/11346 [08:14<5:09:04, 1.68s/it]
294
  3%|▎ | 294/11346 [08:16<5:09:19, 1.68s/it]
295
  3%|▎ | 295/11346 [08:17<5:09:08, 1.68s/it]
296
  3%|▎ | 296/11346 [08:19<5:09:44, 1.68s/it]
297
  3%|▎ | 297/11346 [08:21<5:10:02, 1.68s/it]
298
  3%|▎ | 298/11346 [08:23<5:10:14, 1.68s/it]
299
  3%|▎ | 299/11346 [08:24<5:10:42, 1.69s/it]
300
  3%|▎ | 300/11346 [08:26<5:10:02, 1.68s/it]
301
  3%|▎ | 301/11346 [08:28<5:09:29, 1.68s/it]
302
  3%|▎ | 302/11346 [08:29<5:09:15, 1.68s/it]
303
  3%|▎ | 303/11346 [08:31<5:09:55, 1.68s/it]
304
  3%|▎ | 304/11346 [08:33<5:09:50, 1.68s/it]
305
  3%|▎ | 305/11346 [08:34<5:08:58, 1.68s/it]
306
  3%|▎ | 306/11346 [08:36<5:08:28, 1.68s/it]
307
  3%|▎ | 307/11346 [08:38<5:08:26, 1.68s/it]
308
  3%|▎ | 308/11346 [08:39<5:09:05, 1.68s/it]
309
  3%|▎ | 309/11346 [08:41<5:09:25, 1.68s/it]
310
  3%|▎ | 310/11346 [08:43<5:09:32, 1.68s/it]
311
  3%|▎ | 311/11346 [08:44<5:09:56, 1.69s/it]
312
  3%|▎ | 312/11346 [08:46<5:09:44, 1.68s/it]
313
  3%|▎ | 313/11346 [08:48<5:09:14, 1.68s/it]
314
  3%|▎ | 314/11346 [08:49<5:09:10, 1.68s/it]
315
  3%|▎ | 315/11346 [08:51<5:08:30, 1.68s/it]
316
  3%|▎ | 316/11346 [08:53<5:08:03, 1.68s/it]
317
  3%|▎ | 317/11346 [08:54<5:08:00, 1.68s/it]
318
  3%|▎ | 318/11346 [08:56<5:07:26, 1.67s/it]
319
  3%|▎ | 319/11346 [08:58<5:07:48, 1.67s/it]
320
  3%|▎ | 320/11346 [08:59<5:07:47, 1.67s/it]
321
  3%|▎ | 321/11346 [09:01<5:07:54, 1.68s/it]
322
  3%|▎ | 322/11346 [09:03<5:08:15, 1.68s/it]
323
  3%|▎ | 323/11346 [09:05<5:08:35, 1.68s/it]
324
  3%|▎ | 324/11346 [09:06<5:07:48, 1.68s/it]
325
  3%|▎ | 325/11346 [09:08<5:07:33, 1.67s/it]
326
  3%|▎ | 326/11346 [09:10<5:07:48, 1.68s/it]
327
  3%|▎ | 327/11346 [09:11<5:08:02, 1.68s/it]
328
  3%|▎ | 328/11346 [09:13<5:08:07, 1.68s/it]
329
  3%|▎ | 329/11346 [09:15<5:08:07, 1.68s/it]
330
  3%|▎ | 330/11346 [09:16<5:07:30, 1.67s/it]
331
  3%|▎ | 331/11346 [09:18<5:07:48, 1.68s/it]
332
  3%|▎ | 332/11346 [09:20<5:07:49, 1.68s/it]
333
  3%|▎ | 333/11346 [09:21<5:07:30, 1.68s/it]
334
  3%|▎ | 334/11346 [09:23<5:07:12, 1.67s/it]
335
  3%|▎ | 335/11346 [09:25<5:07:25, 1.68s/it]
336
  3%|▎ | 336/11346 [09:26<5:08:11, 1.68s/it]
337
  3%|▎ | 337/11346 [09:28<5:08:37, 1.68s/it]
338
  3%|▎ | 338/11346 [09:30<5:08:59, 1.68s/it]
339
  3%|▎ | 339/11346 [09:31<5:09:20, 1.69s/it]
340
  3%|▎ | 340/11346 [09:33<5:08:50, 1.68s/it]
341
  3%|▎ | 341/11346 [09:35<5:08:26, 1.68s/it]
342
  3%|▎ | 342/11346 [09:36<5:08:35, 1.68s/it]
343
  3%|▎ | 343/11346 [09:38<5:07:49, 1.68s/it]
344
  3%|▎ | 344/11346 [09:40<5:08:33, 1.68s/it]
345
  3%|▎ | 345/11346 [09:41<5:08:50, 1.68s/it]
346
  3%|▎ | 346/11346 [09:43<5:07:25, 1.68s/it]
347
  3%|▎ | 347/11346 [09:45<5:07:46, 1.68s/it]
348
  3%|▎ | 348/11346 [09:46<5:07:39, 1.68s/it]
349
  3%|▎ | 349/11346 [09:48<5:07:15, 1.68s/it]
350
  3%|▎ | 350/11346 [09:50<5:07:38, 1.68s/it]
351
  3%|▎ | 351/11346 [09:51<5:06:52, 1.67s/it]
352
  3%|▎ | 352/11346 [09:53<5:07:16, 1.68s/it]
353
  3%|▎ | 353/11346 [09:55<5:07:09, 1.68s/it]
354
  3%|▎ | 354/11346 [09:57<5:06:57, 1.68s/it]
355
  3%|▎ | 355/11346 [09:58<5:07:25, 1.68s/it]
356
  3%|▎ | 356/11346 [10:00<5:07:07, 1.68s/it]
357
  3%|▎ | 357/11346 [10:02<5:07:48, 1.68s/it]
358
  3%|▎ | 358/11346 [10:03<5:07:20, 1.68s/it]
359
  3%|▎ | 359/11346 [10:05<5:07:33, 1.68s/it]
360
  3%|▎ | 360/11346 [10:07<5:08:02, 1.68s/it]
361
  3%|▎ | 361/11346 [10:08<5:07:04, 1.68s/it]
362
  3%|▎ | 362/11346 [10:10<5:07:14, 1.68s/it]
363
  3%|▎ | 363/11346 [10:12<5:06:59, 1.68s/it]
364
  3%|▎ | 364/11346 [10:13<5:07:16, 1.68s/it]
365
  3%|▎ | 365/11346 [10:15<5:06:41, 1.68s/it]
366
  3%|▎ | 366/11346 [10:17<5:06:39, 1.68s/it]
367
  3%|▎ | 367/11346 [10:18<5:06:27, 1.67s/it]
368
  3%|▎ | 368/11346 [10:20<5:06:38, 1.68s/it]
369
  3%|▎ | 369/11346 [10:22<5:06:19, 1.67s/it]
370
  3%|▎ | 370/11346 [10:23<5:06:04, 1.67s/it]
371
  3%|▎ | 371/11346 [10:25<5:06:24, 1.68s/it]
372
  3%|▎ | 372/11346 [10:27<5:06:36, 1.68s/it]
373
  3%|▎ | 373/11346 [10:28<5:06:09, 1.67s/it]
374
  3%|▎ | 374/11346 [10:30<5:06:08, 1.67s/it]
375
  3%|▎ | 375/11346 [10:32<5:06:13, 1.67s/it]
376
  3%|▎ | 376/11346 [10:33<5:06:27, 1.68s/it]
377
  3%|▎ | 377/11346 [10:35<5:06:12, 1.67s/it]
378
  3%|▎ | 378/11346 [10:37<5:05:59, 1.67s/it]
379
  3%|▎ | 379/11346 [10:38<5:06:33, 1.68s/it]
380
  3%|▎ | 380/11346 [10:40<5:06:22, 1.68s/it]
381
  3%|▎ | 381/11346 [10:42<5:05:56, 1.67s/it]
382
  3%|▎ | 382/11346 [10:43<5:05:40, 1.67s/it]
383
  3%|▎ | 383/11346 [10:45<5:04:57, 1.67s/it]
384
  3%|▎ | 384/11346 [10:47<5:05:19, 1.67s/it]
385
  3%|▎ | 385/11346 [10:48<5:06:05, 1.68s/it]
386
  3%|▎ | 386/11346 [10:50<5:05:20, 1.67s/it]
387
  3%|▎ | 387/11346 [10:52<5:05:16, 1.67s/it]
388
  3%|▎ | 388/11346 [10:53<5:05:16, 1.67s/it]
389
  3%|▎ | 389/11346 [10:55<5:05:18, 1.67s/it]
390
  3%|▎ | 390/11346 [10:57<5:05:54, 1.68s/it]
391
  3%|▎ | 391/11346 [10:59<5:06:06, 1.68s/it]
392
  3%|▎ | 392/11346 [11:00<5:05:30, 1.67s/it]
393
  3%|▎ | 393/11346 [11:02<5:05:10, 1.67s/it]
394
  3%|▎ | 394/11346 [11:04<5:05:04, 1.67s/it]
395
  3%|▎ | 395/11346 [11:05<5:05:07, 1.67s/it]
396
  3%|▎ | 396/11346 [11:07<5:04:45, 1.67s/it]
397
  3%|▎ | 397/11346 [11:09<5:04:28, 1.67s/it]
398
  4%|▎ | 398/11346 [11:10<5:04:42, 1.67s/it]
399
  4%|▎ | 399/11346 [11:12<5:05:08, 1.67s/it]
400
  4%|▎ | 400/11346 [11:14<5:05:40, 1.68s/it]
401
  4%|▎ | 401/11346 [11:15<5:05:43, 1.68s/it]
402
  4%|▎ | 402/11346 [11:17<5:05:13, 1.67s/it]
403
  4%|▎ | 403/11346 [11:19<5:05:09, 1.67s/it]
404
  4%|▎ | 404/11346 [11:20<5:05:18, 1.67s/it]
405
  4%|▎ | 405/11346 [11:22<5:05:18, 1.67s/it]
406
  4%|▎ | 406/11346 [11:24<5:04:55, 1.67s/it]
407
  4%|▎ | 407/11346 [11:25<5:04:46, 1.67s/it]
408
  4%|▎ | 408/11346 [11:27<5:05:44, 1.68s/it]
409
  4%|▎ | 409/11346 [11:29<5:05:17, 1.67s/it]
410
  4%|▎ | 410/11346 [11:30<5:05:06, 1.67s/it]
411
  4%|▎ | 411/11346 [11:32<5:04:43, 1.67s/it]
412
  4%|▎ | 412/11346 [11:34<5:04:45, 1.67s/it]
413
  4%|▎ | 413/11346 [11:35<5:04:46, 1.67s/it]
414
  4%|▎ | 414/11346 [11:37<5:04:21, 1.67s/it]
415
  4%|▎ | 415/11346 [11:39<5:04:18, 1.67s/it]
416
  4%|▎ | 416/11346 [11:40<5:04:29, 1.67s/it]
417
  4%|▎ | 417/11346 [11:42<5:21:42, 1.77s/it]
418
  4%|▎ | 418/11346 [11:44<5:16:59, 1.74s/it]
419
  4%|▎ | 419/11346 [11:46<5:13:55, 1.72s/it]
420
  4%|▎ | 420/11346 [11:47<5:10:47, 1.71s/it]
421
  4%|▎ | 421/11346 [11:49<5:08:47, 1.70s/it]
422
  4%|▎ | 422/11346 [11:51<5:07:36, 1.69s/it]
423
  4%|▎ | 423/11346 [11:52<5:06:24, 1.68s/it]
424
  4%|▎ | 424/11346 [11:54<5:05:53, 1.68s/it]
425
  4%|▎ | 425/11346 [11:56<5:04:52, 1.68s/it]
426
  4%|▍ | 426/11346 [11:57<5:04:15, 1.67s/it]
427
  4%|▍ | 427/11346 [11:59<5:04:23, 1.67s/it]
428
  4%|▍ | 428/11346 [12:01<5:04:02, 1.67s/it]
429
  4%|▍ | 429/11346 [12:02<5:03:42, 1.67s/it]
430
  4%|▍ | 430/11346 [12:04<5:03:38, 1.67s/it]
431
  4%|▍ | 431/11346 [12:06<5:03:47, 1.67s/it]
432
  4%|▍ | 432/11346 [12:07<5:03:50, 1.67s/it]
433
  4%|▍ | 433/11346 [12:09<5:03:43, 1.67s/it]
434
  4%|▍ | 434/11346 [12:11<5:03:07, 1.67s/it]
435
  4%|▍ | 435/11346 [12:12<5:03:32, 1.67s/it]
436
  4%|▍ | 436/11346 [12:14<5:04:27, 1.67s/it]
437
  4%|▍ | 437/11346 [12:16<5:03:56, 1.67s/it]
438
  4%|▍ | 438/11346 [12:17<5:03:46, 1.67s/it]
439
  4%|▍ | 439/11346 [12:19<5:03:49, 1.67s/it]
440
  4%|▍ | 440/11346 [12:21<5:03:23, 1.67s/it]
441
  4%|▍ | 441/11346 [12:22<5:03:29, 1.67s/it]
442
  4%|▍ | 442/11346 [12:24<5:03:01, 1.67s/it]
443
  4%|▍ | 443/11346 [12:26<5:02:27, 1.66s/it]
444
  4%|▍ | 444/11346 [12:27<5:02:31, 1.67s/it]
445
  4%|▍ | 445/11346 [12:29<5:02:39, 1.67s/it]
446
  4%|▍ | 446/11346 [12:31<5:02:30, 1.67s/it]
447
  4%|▍ | 447/11346 [12:32<5:03:08, 1.67s/it]
448
  4%|▍ | 448/11346 [12:34<5:03:54, 1.67s/it]
449
  4%|▍ | 449/11346 [12:36<5:04:07, 1.67s/it]
450
  4%|▍ | 450/11346 [12:37<5:04:10, 1.67s/it]
451
  4%|▍ | 451/11346 [12:39<5:03:38, 1.67s/it]
452
  4%|▍ | 452/11346 [12:41<5:03:29, 1.67s/it]
453
  4%|▍ | 453/11346 [12:42<5:03:48, 1.67s/it]
454
  4%|▍ | 454/11346 [12:44<5:03:09, 1.67s/it]
455
  4%|▍ | 455/11346 [12:46<5:02:57, 1.67s/it]
456
  4%|▍ | 456/11346 [12:47<5:02:57, 1.67s/it]
457
  4%|▍ | 457/11346 [12:49<5:04:03, 1.68s/it]
458
  4%|▍ | 458/11346 [12:51<5:03:59, 1.68s/it]
459
  4%|▍ | 459/11346 [12:53<5:21:15, 1.77s/it]
460
  4%|▍ | 460/11346 [12:55<5:17:49, 1.75s/it]
461
  4%|▍ | 461/11346 [12:56<5:13:41, 1.73s/it]
462
  4%|▍ | 462/11346 [12:58<5:13:35, 1.73s/it]
463
  4%|▍ | 463/11346 [13:00<5:10:36, 1.71s/it]
464
  4%|▍ | 464/11346 [13:01<5:08:09, 1.70s/it]
465
  4%|▍ | 465/11346 [13:03<5:06:18, 1.69s/it]
466
  4%|▍ | 466/11346 [13:05<5:04:55, 1.68s/it]
467
  4%|▍ | 467/11346 [13:06<5:04:22, 1.68s/it]
468
  4%|▍ | 468/11346 [13:08<5:04:22, 1.68s/it]
469
  4%|▍ | 469/11346 [13:10<5:04:45, 1.68s/it]
470
  4%|▍ | 470/11346 [13:11<5:04:50, 1.68s/it]
471
  4%|▍ | 471/11346 [13:13<5:04:24, 1.68s/it]
472
  4%|▍ | 472/11346 [13:15<5:04:33, 1.68s/it]
473
  4%|▍ | 473/11346 [13:16<5:04:15, 1.68s/it]
474
  4%|▍ | 474/11346 [13:18<5:03:50, 1.68s/it]
475
  4%|▍ | 475/11346 [13:20<5:02:43, 1.67s/it]
476
  4%|▍ | 476/11346 [13:21<5:03:09, 1.67s/it]
477
  4%|▍ | 477/11346 [13:23<5:02:54, 1.67s/it]
478
  4%|▍ | 478/11346 [13:25<5:02:49, 1.67s/it]
479
  4%|▍ | 479/11346 [13:26<5:02:38, 1.67s/it]
480
  4%|▍ | 480/11346 [13:28<5:02:39, 1.67s/it]
481
  4%|▍ | 481/11346 [13:30<5:02:47, 1.67s/it]
482
  4%|▍ | 482/11346 [13:31<5:01:53, 1.67s/it]
483
  4%|▍ | 483/11346 [13:33<5:02:10, 1.67s/it]
484
  4%|▍ | 484/11346 [13:35<5:02:28, 1.67s/it]
485
  4%|▍ | 485/11346 [13:36<5:02:10, 1.67s/it]
486
  4%|▍ | 486/11346 [13:38<5:02:15, 1.67s/it]
487
  4%|▍ | 487/11346 [13:40<5:02:22, 1.67s/it]
488
  4%|▍ | 488/11346 [13:41<5:02:32, 1.67s/it]
489
  4%|▍ | 489/11346 [13:43<5:03:04, 1.67s/it]
490
  4%|▍ | 490/11346 [13:45<5:02:53, 1.67s/it]
491
  4%|▍ | 491/11346 [13:46<5:02:19, 1.67s/it]
492
  4%|▍ | 492/11346 [13:48<5:02:10, 1.67s/it]
493
  4%|▍ | 493/11346 [13:50<5:01:41, 1.67s/it]
494
  4%|▍ | 494/11346 [13:51<5:02:02, 1.67s/it]
495
  4%|▍ | 495/11346 [13:53<5:01:21, 1.67s/it]
496
  4%|▍ | 496/11346 [13:55<5:01:26, 1.67s/it]
497
  4%|▍ | 497/11346 [13:56<5:01:15, 1.67s/it]
498
  4%|▍ | 498/11346 [13:58<5:01:42, 1.67s/it]
499
  4%|▍ | 499/11346 [14:00<5:01:44, 1.67s/it]
500
  4%|▍ | 500/11346 [14:01<5:02:14, 1.67s/it]
501
 
502
  4%|▍ | 500/11346 [14:01<5:02:14, 1.67s/it]
503
  4%|▍ | 501/11346 [14:03<5:02:32, 1.67s/it]
504
  4%|▍ | 502/11346 [14:05<5:02:02, 1.67s/it]
505
  4%|▍ | 503/11346 [14:06<5:01:34, 1.67s/it]
506
  4%|▍ | 504/11346 [14:08<5:02:24, 1.67s/it]
507
  4%|▍ | 505/11346 [14:10<5:02:05, 1.67s/it]
508
  4%|▍ | 506/11346 [14:11<5:02:21, 1.67s/it]
509
  4%|▍ | 507/11346 [14:13<5:01:52, 1.67s/it]
510
  4%|▍ | 508/11346 [14:15<5:01:57, 1.67s/it]
511
  4%|▍ | 509/11346 [14:16<5:02:53, 1.68s/it]
512
  4%|▍ | 510/11346 [14:18<5:02:34, 1.68s/it]
513
  5%|▍ | 511/11346 [14:20<5:02:36, 1.68s/it]
514
  5%|▍ | 512/11346 [14:22<5:02:55, 1.68s/it]
515
  5%|▍ | 513/11346 [14:23<5:03:14, 1.68s/it]
516
  5%|▍ | 514/11346 [14:25<5:02:12, 1.67s/it]
517
  5%|▍ | 515/11346 [14:27<5:02:19, 1.67s/it]
518
  5%|▍ | 516/11346 [14:28<5:01:39, 1.67s/it]
519
  5%|▍ | 517/11346 [14:30<5:01:15, 1.67s/it]
520
  5%|▍ | 518/11346 [14:32<5:01:18, 1.67s/it]
521
  5%|▍ | 519/11346 [14:33<5:00:55, 1.67s/it]
522
  5%|▍ | 520/11346 [14:35<5:02:20, 1.68s/it]
523
  5%|▍ | 521/11346 [14:37<5:03:12, 1.68s/it]
524
  5%|▍ | 522/11346 [14:38<5:03:18, 1.68s/it]
525
  5%|▍ | 523/11346 [14:40<5:03:23, 1.68s/it]
526
  5%|▍ | 524/11346 [14:42<5:03:28, 1.68s/it]
527
  5%|▍ | 525/11346 [14:43<5:03:05, 1.68s/it]
528
  5%|▍ | 526/11346 [14:45<5:03:17, 1.68s/it]
529
  5%|▍ | 527/11346 [14:47<5:03:29, 1.68s/it]
530
  5%|▍ | 528/11346 [14:48<5:03:48, 1.69s/it]
531
  5%|▍ | 529/11346 [14:50<5:03:55, 1.69s/it]
532
  5%|▍ | 530/11346 [14:52<5:04:50, 1.69s/it]
533
  5%|▍ | 531/11346 [14:53<5:04:48, 1.69s/it]
534
  5%|▍ | 532/11346 [14:55<5:04:26, 1.69s/it]
535
  5%|▍ | 533/11346 [14:57<5:04:27, 1.69s/it]
536
  5%|▍ | 534/11346 [14:59<5:04:52, 1.69s/it]
537
  5%|▍ | 535/11346 [15:00<5:04:59, 1.69s/it]
538
  5%|▍ | 536/11346 [15:02<5:04:05, 1.69s/it]
539
  5%|▍ | 537/11346 [15:04<5:03:08, 1.68s/it]
540
  5%|▍ | 538/11346 [15:05<5:02:24, 1.68s/it]
541
  5%|▍ | 539/11346 [15:07<5:01:50, 1.68s/it]
542
  5%|▍ | 540/11346 [15:09<5:01:27, 1.67s/it]
543
  5%|▍ | 541/11346 [15:10<5:01:09, 1.67s/it]
544
  5%|▍ | 542/11346 [15:12<5:00:10, 1.67s/it]
545
  5%|▍ | 543/11346 [15:14<5:00:16, 1.67s/it]
546
  5%|▍ | 544/11346 [15:15<5:00:51, 1.67s/it]
547
  5%|▍ | 545/11346 [15:17<5:01:04, 1.67s/it]
548
  5%|▍ | 546/11346 [15:19<5:01:08, 1.67s/it]
549
  5%|▍ | 547/11346 [15:20<5:00:45, 1.67s/it]
550
  5%|▍ | 548/11346 [15:22<5:01:03, 1.67s/it]
551
  5%|▍ | 549/11346 [15:24<5:00:43, 1.67s/it]
552
  5%|▍ | 550/11346 [15:25<5:00:52, 1.67s/it]
553
  5%|▍ | 551/11346 [15:27<5:00:40, 1.67s/it]
554
  5%|▍ | 552/11346 [15:29<5:00:01, 1.67s/it]
555
  5%|▍ | 553/11346 [15:30<4:59:21, 1.66s/it]
556
  5%|▍ | 554/11346 [15:32<4:59:19, 1.66s/it]
557
  5%|▍ | 555/11346 [15:34<4:59:11, 1.66s/it]
558
  5%|▍ | 556/11346 [15:35<4:59:44, 1.67s/it]
559
  5%|▍ | 557/11346 [15:37<4:59:52, 1.67s/it]
560
  5%|▍ | 558/11346 [15:39<4:59:58, 1.67s/it]
561
  5%|▍ | 559/11346 [15:40<4:59:58, 1.67s/it]
562
  5%|▍ | 560/11346 [15:42<4:59:56, 1.67s/it]
563
  5%|▍ | 561/11346 [15:44<4:59:27, 1.67s/it]
564
  5%|▍ | 562/11346 [15:45<4:59:50, 1.67s/it]
565
  5%|▍ | 563/11346 [15:47<4:59:42, 1.67s/it]
566
  5%|▍ | 564/11346 [15:49<4:59:51, 1.67s/it]
567
  5%|▍ | 565/11346 [15:50<4:59:37, 1.67s/it]
568
  5%|▍ | 566/11346 [15:52<4:59:35, 1.67s/it]
569
  5%|▍ | 567/11346 [15:54<4:59:40, 1.67s/it]
570
  5%|▌ | 568/11346 [15:55<4:59:11, 1.67s/it]
571
  5%|▌ | 569/11346 [15:57<4:58:53, 1.66s/it]
572
  5%|▌ | 570/11346 [15:59<4:58:52, 1.66s/it]
573
  5%|▌ | 571/11346 [16:00<4:58:37, 1.66s/it]
574
  5%|▌ | 572/11346 [16:02<4:58:21, 1.66s/it]
575
  5%|▌ | 573/11346 [16:04<4:58:34, 1.66s/it]
576
  5%|▌ | 574/11346 [16:05<4:58:30, 1.66s/it]
577
  5%|▌ | 575/11346 [16:07<4:58:31, 1.66s/it]
578
  5%|▌ | 576/11346 [16:09<4:58:09, 1.66s/it]
579
  5%|▌ | 577/11346 [16:10<4:58:28, 1.66s/it]
580
  5%|▌ | 578/11346 [16:12<4:59:12, 1.67s/it]
581
  5%|▌ | 579/11346 [16:14<4:58:45, 1.66s/it]
582
  5%|▌ | 580/11346 [16:15<4:58:44, 1.66s/it]
583
  5%|▌ | 581/11346 [16:17<4:58:33, 1.66s/it]
584
  5%|▌ | 582/11346 [16:19<4:58:39, 1.66s/it]
585
  5%|▌ | 583/11346 [16:20<4:58:37, 1.66s/it]
586
  5%|▌ | 584/11346 [16:22<4:59:01, 1.67s/it]
587
  5%|▌ | 585/11346 [16:24<4:59:00, 1.67s/it]
588
  5%|▌ | 586/11346 [16:25<4:58:48, 1.67s/it]
589
  5%|▌ | 587/11346 [16:27<4:59:31, 1.67s/it]
590
  5%|▌ | 588/11346 [16:29<4:59:17, 1.67s/it]
591
  5%|▌ | 589/11346 [16:30<4:59:01, 1.67s/it]
592
  5%|▌ | 590/11346 [16:32<4:59:00, 1.67s/it]
593
  5%|▌ | 591/11346 [16:34<4:58:32, 1.67s/it]
594
  5%|▌ | 592/11346 [16:35<4:58:14, 1.66s/it]
595
  5%|▌ | 593/11346 [16:37<4:58:02, 1.66s/it]
596
  5%|▌ | 594/11346 [16:39<4:58:02, 1.66s/it]
597
  5%|▌ | 595/11346 [16:40<4:58:33, 1.67s/it]
598
  5%|▌ | 596/11346 [16:42<4:58:51, 1.67s/it]
599
  5%|▌ | 597/11346 [16:44<4:59:06, 1.67s/it]
600
  5%|▌ | 598/11346 [16:45<4:59:38, 1.67s/it]
601
  5%|▌ | 599/11346 [16:47<4:59:16, 1.67s/it]
602
  5%|▌ | 600/11346 [16:49<4:58:32, 1.67s/it]
603
  5%|▌ | 601/11346 [16:50<4:58:21, 1.67s/it]
604
  5%|▌ | 602/11346 [16:52<4:58:30, 1.67s/it]
605
  5%|▌ | 603/11346 [16:54<4:58:01, 1.66s/it]
606
  5%|▌ | 604/11346 [16:55<4:57:49, 1.66s/it]
607
  5%|▌ | 605/11346 [16:57<4:58:10, 1.67s/it]
608
  5%|▌ | 606/11346 [16:59<4:57:58, 1.66s/it]
609
  5%|▌ | 607/11346 [17:00<4:57:37, 1.66s/it]
610
  5%|▌ | 608/11346 [17:02<4:58:11, 1.67s/it]
611
  5%|▌ | 609/11346 [17:04<4:57:44, 1.66s/it]
612
  5%|▌ | 610/11346 [17:05<4:58:14, 1.67s/it]
613
  5%|▌ | 611/11346 [17:07<4:58:20, 1.67s/it]
614
  5%|▌ | 612/11346 [17:09<4:58:21, 1.67s/it]
615
  5%|▌ | 613/11346 [17:10<4:57:54, 1.67s/it]
616
  5%|▌ | 614/11346 [17:12<4:57:44, 1.66s/it]
617
  5%|▌ | 615/11346 [17:14<4:57:21, 1.66s/it]
618
  5%|▌ | 616/11346 [17:15<4:57:10, 1.66s/it]
619
  5%|▌ | 617/11346 [17:17<4:57:06, 1.66s/it]
620
  5%|▌ | 618/11346 [17:19<4:57:04, 1.66s/it]
621
  5%|▌ | 619/11346 [17:20<4:56:53, 1.66s/it]
622
  5%|▌ | 620/11346 [17:22<4:56:52, 1.66s/it]
623
  5%|▌ | 621/11346 [17:24<4:57:12, 1.66s/it]
624
  5%|▌ | 622/11346 [17:25<4:57:38, 1.67s/it]
625
  5%|▌ | 623/11346 [17:27<4:57:06, 1.66s/it]
626
  5%|▌ | 624/11346 [17:29<4:57:06, 1.66s/it]
627
  6%|▌ | 625/11346 [17:30<4:57:03, 1.66s/it]
628
  6%|▌ | 626/11346 [17:32<4:57:12, 1.66s/it]
629
  6%|▌ | 627/11346 [17:34<4:57:32, 1.67s/it]
630
  6%|▌ | 628/11346 [17:35<4:57:31, 1.67s/it]
631
  6%|▌ | 629/11346 [17:37<4:57:00, 1.66s/it]
632
  6%|▌ | 630/11346 [17:39<4:57:02, 1.66s/it]
633
  6%|▌ | 631/11346 [17:40<4:57:57, 1.67s/it]
634
  6%|▌ | 632/11346 [17:42<4:59:03, 1.67s/it]
635
  6%|▌ | 633/11346 [17:44<4:59:56, 1.68s/it]
636
  6%|▌ | 634/11346 [17:45<5:00:30, 1.68s/it]
637
  6%|▌ | 635/11346 [17:47<5:01:20, 1.69s/it]
638
  6%|▌ | 636/11346 [17:49<5:01:53, 1.69s/it]
639
  6%|▌ | 637/11346 [17:50<5:02:01, 1.69s/it]
640
  6%|▌ | 638/11346 [17:52<5:01:55, 1.69s/it]
641
  6%|▌ | 639/11346 [17:54<5:02:05, 1.69s/it]
642
  6%|▌ | 640/11346 [17:55<5:01:57, 1.69s/it]
643
  6%|▌ | 641/11346 [17:57<5:02:03, 1.69s/it]
644
  6%|▌ | 642/11346 [17:59<5:01:59, 1.69s/it]
645
  6%|▌ | 643/11346 [18:01<5:01:45, 1.69s/it]
646
  6%|▌ | 644/11346 [18:02<5:01:34, 1.69s/it]
647
  6%|▌ | 645/11346 [18:04<5:01:09, 1.69s/it]
648
  6%|▌ | 646/11346 [18:06<5:01:04, 1.69s/it]
649
  6%|▌ | 647/11346 [18:07<5:00:31, 1.69s/it]
650
  6%|▌ | 648/11346 [18:09<4:59:12, 1.68s/it]
651
  6%|▌ | 649/11346 [18:11<4:58:50, 1.68s/it]
652
  6%|▌ | 650/11346 [18:12<4:57:53, 1.67s/it]
653
  6%|▌ | 651/11346 [18:14<4:57:24, 1.67s/it]
654
  6%|▌ | 652/11346 [18:16<4:57:12, 1.67s/it]
655
  6%|▌ | 653/11346 [18:17<4:56:21, 1.66s/it]
656
  6%|▌ | 654/11346 [18:19<4:57:55, 1.67s/it]
657
  6%|▌ | 655/11346 [18:21<4:58:01, 1.67s/it]
658
  6%|▌ | 656/11346 [18:22<4:58:46, 1.68s/it]
659
  6%|▌ | 657/11346 [18:24<4:59:30, 1.68s/it]
660
  6%|▌ | 658/11346 [18:26<5:00:04, 1.68s/it]
661
  6%|▌ | 659/11346 [18:27<5:00:31, 1.69s/it]
662
  6%|▌ | 660/11346 [18:29<5:00:33, 1.69s/it]
663
  6%|▌ | 661/11346 [18:31<5:00:11, 1.69s/it]
664
  6%|▌ | 662/11346 [18:32<5:00:16, 1.69s/it]
665
  6%|▌ | 663/11346 [18:34<5:00:07, 1.69s/it]
666
  6%|▌ | 664/11346 [18:36<4:59:52, 1.68s/it]
667
  6%|▌ | 665/11346 [18:37<4:59:42, 1.68s/it]
668
  6%|▌ | 666/11346 [18:39<5:00:08, 1.69s/it]
669
  6%|▌ | 667/11346 [18:41<4:59:57, 1.69s/it]
670
  6%|▌ | 668/11346 [18:43<5:00:15, 1.69s/it]
671
  6%|▌ | 669/11346 [18:44<5:00:14, 1.69s/it]
672
  6%|▌ | 670/11346 [18:46<5:00:31, 1.69s/it]
673
  6%|▌ | 671/11346 [18:48<5:00:12, 1.69s/it]
674
  6%|▌ | 672/11346 [18:49<4:59:53, 1.69s/it]
675
  6%|▌ | 673/11346 [18:51<5:00:01, 1.69s/it]
676
  6%|▌ | 674/11346 [18:53<5:00:30, 1.69s/it]
677
  6%|▌ | 675/11346 [18:54<5:00:06, 1.69s/it]
678
  6%|▌ | 676/11346 [18:56<4:59:33, 1.68s/it]
679
  6%|▌ | 677/11346 [18:58<4:59:41, 1.69s/it]
680
  6%|▌ | 678/11346 [18:59<4:59:27, 1.68s/it]
681
  6%|▌ | 679/11346 [19:01<4:59:22, 1.68s/it]
682
  6%|▌ | 680/11346 [19:03<4:58:49, 1.68s/it]
683
  6%|▌ | 681/11346 [19:04<4:58:44, 1.68s/it]
684
  6%|▌ | 682/11346 [19:06<4:59:19, 1.68s/it]
685
  6%|▌ | 683/11346 [19:08<5:00:28, 1.69s/it]
686
  6%|▌ | 684/11346 [19:10<5:00:22, 1.69s/it]
687
  6%|▌ | 685/11346 [19:11<5:00:50, 1.69s/it]
688
  6%|▌ | 686/11346 [19:13<5:00:45, 1.69s/it]
689
  6%|▌ | 687/11346 [19:15<5:00:53, 1.69s/it]
690
  6%|▌ | 688/11346 [19:16<5:00:21, 1.69s/it]
691
  6%|▌ | 689/11346 [19:18<4:59:46, 1.69s/it]
692
  6%|▌ | 690/11346 [19:20<4:59:40, 1.69s/it]
693
  6%|▌ | 691/11346 [19:21<4:59:23, 1.69s/it]
694
  6%|▌ | 692/11346 [19:23<4:59:26, 1.69s/it]
695
  6%|▌ | 693/11346 [19:25<4:59:19, 1.69s/it]
696
  6%|▌ | 694/11346 [19:26<4:58:49, 1.68s/it]
697
  6%|▌ | 695/11346 [19:28<4:58:41, 1.68s/it]
698
  6%|▌ | 696/11346 [19:30<4:58:39, 1.68s/it]
699
  6%|▌ | 697/11346 [19:31<4:58:06, 1.68s/it]
700
  6%|▌ | 698/11346 [19:33<4:58:06, 1.68s/it]
701
  6%|▌ | 699/11346 [19:35<4:57:56, 1.68s/it]
702
  6%|▌ | 700/11346 [19:36<4:58:00, 1.68s/it]
703
  6%|▌ | 701/11346 [19:38<4:58:51, 1.68s/it]
704
  6%|▌ | 702/11346 [19:40<4:59:12, 1.69s/it]
705
  6%|▌ | 703/11346 [19:42<4:59:37, 1.69s/it]
706
  6%|▌ | 704/11346 [19:43<5:00:02, 1.69s/it]
707
  6%|▌ | 705/11346 [19:45<4:59:14, 1.69s/it]
708
  6%|▌ | 706/11346 [19:47<4:58:56, 1.69s/it]
709
  6%|▌ | 707/11346 [19:48<4:58:31, 1.68s/it]
710
  6%|▌ | 708/11346 [19:50<4:57:54, 1.68s/it]
711
  6%|▌ | 709/11346 [19:52<4:58:07, 1.68s/it]
712
  6%|▋ | 710/11346 [19:53<4:57:46, 1.68s/it]
713
  6%|▋ | 711/11346 [19:55<4:57:57, 1.68s/it]
714
  6%|▋ | 712/11346 [19:57<4:58:10, 1.68s/it]
715
  6%|▋ | 713/11346 [19:58<4:57:58, 1.68s/it]
716
  6%|▋ | 714/11346 [20:00<4:57:53, 1.68s/it]
717
  6%|▋ | 715/11346 [20:02<4:57:37, 1.68s/it]
718
  6%|▋ | 716/11346 [20:03<4:57:45, 1.68s/it]
719
  6%|▋ | 717/11346 [20:05<4:57:19, 1.68s/it]
720
  6%|▋ | 718/11346 [20:07<4:57:44, 1.68s/it]
721
  6%|▋ | 719/11346 [20:08<4:56:51, 1.68s/it]
722
  6%|▋ | 720/11346 [20:10<4:56:15, 1.67s/it]
723
  6%|▋ | 721/11346 [20:12<4:55:17, 1.67s/it]
724
  6%|▋ | 722/11346 [20:13<4:54:35, 1.66s/it]
725
  6%|▋ | 723/11346 [20:15<4:54:33, 1.66s/it]
726
  6%|▋ | 724/11346 [20:17<4:54:14, 1.66s/it]
727
  6%|▋ | 725/11346 [20:18<4:54:05, 1.66s/it]
728
  6%|▋ | 726/11346 [20:20<4:55:30, 1.67s/it]
729
  6%|▋ | 727/11346 [20:22<4:56:16, 1.67s/it]
730
  6%|▋ | 728/11346 [20:23<4:56:08, 1.67s/it]
731
  6%|▋ | 729/11346 [20:25<4:56:47, 1.68s/it]
732
  6%|▋ | 730/11346 [20:27<4:57:13, 1.68s/it]
733
  6%|▋ | 731/11346 [20:28<4:56:30, 1.68s/it]
734
  6%|▋ | 732/11346 [20:30<4:56:32, 1.68s/it]
735
  6%|▋ | 733/11346 [20:32<4:55:43, 1.67s/it]
736
  6%|▋ | 734/11346 [20:33<4:55:09, 1.67s/it]
737
  6%|▋ | 735/11346 [20:35<4:54:32, 1.67s/it]
738
  6%|▋ | 736/11346 [20:37<4:54:17, 1.66s/it]
739
  6%|▋ | 737/11346 [20:38<4:53:46, 1.66s/it]
740
  7%|▋ | 738/11346 [20:40<4:53:33, 1.66s/it]
741
  7%|▋ | 739/11346 [20:42<4:54:24, 1.67s/it]
742
  7%|▋ | 740/11346 [20:43<4:54:11, 1.66s/it]
743
  7%|▋ | 741/11346 [20:45<4:54:15, 1.66s/it]
744
  7%|▋ | 742/11346 [20:47<4:53:57, 1.66s/it]
745
  7%|▋ | 743/11346 [20:48<4:53:34, 1.66s/it]
746
  7%|▋ | 744/11346 [20:50<4:53:25, 1.66s/it]
747
  7%|▋ | 745/11346 [20:52<4:53:35, 1.66s/it]
748
  7%|▋ | 746/11346 [20:53<4:53:32, 1.66s/it]
749
  7%|▋ | 747/11346 [20:55<4:53:38, 1.66s/it]
750
  7%|▋ | 748/11346 [20:57<4:53:14, 1.66s/it]
751
  7%|▋ | 749/11346 [20:58<4:53:01, 1.66s/it]
752
  7%|▋ | 750/11346 [21:00<4:53:11, 1.66s/it]
753
  7%|▋ | 751/11346 [21:02<4:53:15, 1.66s/it]
754
  7%|▋ | 752/11346 [21:03<4:52:58, 1.66s/it]
755
  7%|▋ | 753/11346 [21:05<4:54:12, 1.67s/it]
756
  7%|▋ | 754/11346 [21:07<4:55:08, 1.67s/it]
757
  7%|▋ | 755/11346 [21:08<4:54:37, 1.67s/it]
758
  7%|▋ | 756/11346 [21:10<4:54:09, 1.67s/it]
759
  7%|▋ | 757/11346 [21:12<4:53:54, 1.67s/it]
760
  7%|▋ | 758/11346 [21:13<4:53:53, 1.67s/it]
761
  7%|▋ | 759/11346 [21:15<4:53:47, 1.66s/it]
762
  7%|▋ | 760/11346 [21:17<4:53:31, 1.66s/it]
763
  7%|▋ | 761/11346 [21:18<4:53:03, 1.66s/it]
764
  7%|▋ | 762/11346 [21:20<4:53:05, 1.66s/it]
765
  7%|▋ | 763/11346 [21:22<4:54:17, 1.67s/it]
766
  7%|▋ | 764/11346 [21:23<4:54:43, 1.67s/it]
767
  7%|▋ | 765/11346 [21:25<4:55:05, 1.67s/it]
768
  7%|▋ | 766/11346 [21:27<4:55:33, 1.68s/it]
769
  7%|▋ | 767/11346 [21:28<4:55:35, 1.68s/it]
770
  7%|▋ | 768/11346 [21:30<4:55:51, 1.68s/it]
771
  7%|▋ | 769/11346 [21:32<4:56:18, 1.68s/it]
772
  7%|▋ | 770/11346 [21:33<4:55:49, 1.68s/it]
773
  7%|▋ | 771/11346 [21:35<4:55:55, 1.68s/it]
774
  7%|▋ | 772/11346 [21:37<4:55:46, 1.68s/it]
775
  7%|▋ | 773/11346 [21:38<4:55:42, 1.68s/it]
776
  7%|▋ | 774/11346 [21:40<4:55:06, 1.67s/it]
777
  7%|▋ | 775/11346 [21:42<4:54:05, 1.67s/it]
778
  7%|▋ | 776/11346 [21:43<4:53:21, 1.67s/it]
779
  7%|▋ | 777/11346 [21:45<4:54:19, 1.67s/it]
780
  7%|▋ | 778/11346 [21:47<4:54:38, 1.67s/it]
781
  7%|▋ | 779/11346 [21:48<4:54:30, 1.67s/it]
782
  7%|▋ | 780/11346 [21:50<4:55:19, 1.68s/it]
783
  7%|▋ | 781/11346 [21:52<4:55:11, 1.68s/it]
784
  7%|▋ | 782/11346 [21:54<4:54:34, 1.67s/it]
785
  7%|▋ | 783/11346 [21:55<4:54:44, 1.67s/it]
786
  7%|▋ | 784/11346 [21:57<4:54:42, 1.67s/it]
787
  7%|▋ | 785/11346 [21:59<4:54:49, 1.68s/it]
788
  7%|▋ | 786/11346 [22:00<4:55:14, 1.68s/it]
789
  7%|▋ | 787/11346 [22:02<4:55:26, 1.68s/it]
790
  7%|▋ | 788/11346 [22:04<4:55:16, 1.68s/it]
791
  7%|▋ | 789/11346 [22:05<4:54:52, 1.68s/it]
792
  7%|▋ | 790/11346 [22:07<4:54:51, 1.68s/it]
793
  7%|▋ | 791/11346 [22:09<4:55:31, 1.68s/it]
794
  7%|▋ | 792/11346 [22:10<4:55:13, 1.68s/it]
795
  7%|▋ | 793/11346 [22:12<4:54:55, 1.68s/it]
796
  7%|▋ | 794/11346 [22:14<4:54:53, 1.68s/it]
797
  7%|▋ | 795/11346 [22:15<4:54:41, 1.68s/it]
798
  7%|▋ | 796/11346 [22:17<4:54:32, 1.68s/it]
799
  7%|▋ | 797/11346 [22:19<4:54:57, 1.68s/it]
800
  7%|▋ | 798/11346 [22:20<4:55:02, 1.68s/it]
801
  7%|▋ | 799/11346 [22:22<4:55:15, 1.68s/it]
802
  7%|▋ | 800/11346 [22:24<4:55:11, 1.68s/it]
803
  7%|▋ | 801/11346 [22:25<4:54:19, 1.67s/it]
804
  7%|▋ | 802/11346 [22:27<4:53:24, 1.67s/it]
805
  7%|▋ | 803/11346 [22:29<4:52:46, 1.67s/it]
806
  7%|▋ | 804/11346 [22:30<4:52:32, 1.67s/it]
807
  7%|▋ | 805/11346 [22:32<4:52:00, 1.66s/it]
808
  7%|▋ | 806/11346 [22:34<4:52:02, 1.66s/it]
809
  7%|▋ | 807/11346 [22:35<4:53:44, 1.67s/it]
810
  7%|▋ | 808/11346 [22:37<4:54:03, 1.67s/it]
811
  7%|▋ | 809/11346 [22:39<4:54:23, 1.68s/it]
812
  7%|▋ | 810/11346 [22:40<4:53:49, 1.67s/it]
813
  7%|▋ | 811/11346 [22:42<4:53:01, 1.67s/it]
814
  7%|▋ | 812/11346 [22:44<4:52:27, 1.67s/it]
815
  7%|▋ | 813/11346 [22:45<4:52:18, 1.67s/it]
816
  7%|▋ | 814/11346 [22:47<4:52:02, 1.66s/it]
817
  7%|▋ | 815/11346 [22:49<4:51:27, 1.66s/it]
818
  7%|▋ | 816/11346 [22:50<4:51:19, 1.66s/it]
819
  7%|▋ | 817/11346 [22:52<4:51:09, 1.66s/it]
820
  7%|▋ | 818/11346 [22:54<4:51:02, 1.66s/it]
821
  7%|▋ | 819/11346 [22:55<4:51:01, 1.66s/it]
822
  7%|▋ | 820/11346 [22:57<4:51:02, 1.66s/it]
823
  7%|▋ | 821/11346 [22:59<5:08:01, 1.76s/it]
824
  7%|▋ | 822/11346 [23:01<5:02:52, 1.73s/it]
825
  7%|▋ | 823/11346 [23:02<4:59:30, 1.71s/it]
826
  7%|▋ | 824/11346 [23:04<4:56:55, 1.69s/it]
827
  7%|▋ | 825/11346 [23:06<4:55:07, 1.68s/it]
828
  7%|▋ | 826/11346 [23:07<4:53:39, 1.67s/it]
829
  7%|▋ | 827/11346 [23:09<4:52:41, 1.67s/it]
830
  7%|▋ | 828/11346 [23:11<4:51:52, 1.66s/it]
831
  7%|▋ | 829/11346 [23:12<4:51:17, 1.66s/it]
832
  7%|▋ | 830/11346 [23:14<4:52:05, 1.67s/it]
833
  7%|▋ | 831/11346 [23:16<4:52:35, 1.67s/it]
834
  7%|▋ | 832/11346 [23:17<4:52:52, 1.67s/it]
835
  7%|▋ | 833/11346 [23:19<4:52:25, 1.67s/it]
836
  7%|▋ | 834/11346 [23:21<4:52:15, 1.67s/it]
837
  7%|▋ | 835/11346 [23:22<4:51:22, 1.66s/it]
838
  7%|▋ | 836/11346 [23:24<4:50:47, 1.66s/it]
839
  7%|▋ | 837/11346 [23:26<4:50:29, 1.66s/it]
840
  7%|▋ | 838/11346 [23:27<4:50:16, 1.66s/it]
841
  7%|▋ | 839/11346 [23:29<4:49:57, 1.66s/it]
842
  7%|▋ | 840/11346 [23:31<4:50:23, 1.66s/it]
843
  7%|▋ | 841/11346 [23:32<4:50:18, 1.66s/it]
844
  7%|▋ | 842/11346 [23:34<4:50:20, 1.66s/it]
845
  7%|▋ | 843/11346 [23:35<4:49:52, 1.66s/it]
846
  7%|▋ | 844/11346 [23:37<4:49:43, 1.66s/it]
847
  7%|▋ | 845/11346 [23:39<4:49:51, 1.66s/it]
848
  7%|▋ | 846/11346 [23:40<4:49:52, 1.66s/it]
849
  7%|▋ | 847/11346 [23:42<4:49:52, 1.66s/it]
850
  7%|▋ | 848/11346 [23:44<4:50:00, 1.66s/it]
851
  7%|▋ | 849/11346 [23:45<4:50:11, 1.66s/it]
852
  7%|▋ | 850/11346 [23:47<4:50:22, 1.66s/it]
853
  8%|▊ | 851/11346 [23:49<4:49:56, 1.66s/it]
854
  8%|▊ | 852/11346 [23:50<4:49:53, 1.66s/it]
855
  8%|▊ | 853/11346 [23:52<4:50:04, 1.66s/it]
856
  8%|▊ | 854/11346 [23:54<4:50:03, 1.66s/it]
857
  8%|▊ | 855/11346 [23:55<4:49:53, 1.66s/it]
858
  8%|▊ | 856/11346 [23:57<4:49:48, 1.66s/it]
859
  8%|▊ | 857/11346 [23:59<4:49:27, 1.66s/it]
860
  8%|▊ | 858/11346 [24:00<4:49:06, 1.65s/it]
861
  8%|▊ | 859/11346 [24:02<4:49:20, 1.66s/it]
862
  8%|▊ | 860/11346 [24:04<4:49:13, 1.65s/it]
863
  8%|▊ | 861/11346 [24:05<4:49:15, 1.66s/it]
864
  8%|▊ | 862/11346 [24:07<4:49:24, 1.66s/it]
865
  8%|▊ | 863/11346 [24:09<4:49:17, 1.66s/it]
866
  8%|▊ | 864/11346 [24:10<4:49:44, 1.66s/it]
867
  8%|▊ | 865/11346 [24:12<4:49:21, 1.66s/it]
868
  8%|▊ | 866/11346 [24:14<4:49:42, 1.66s/it]
869
  8%|▊ | 867/11346 [24:15<4:52:05, 1.67s/it]
870
  8%|▊ | 868/11346 [24:17<4:51:23, 1.67s/it]
871
  8%|▊ | 869/11346 [24:19<4:50:54, 1.67s/it]
872
  8%|▊ | 870/11346 [24:20<4:50:04, 1.66s/it]
873
  8%|▊ | 871/11346 [24:22<4:49:53, 1.66s/it]
874
  8%|▊ | 872/11346 [24:24<4:49:23, 1.66s/it]
875
  8%|▊ | 873/11346 [24:25<4:49:25, 1.66s/it]
876
  8%|▊ | 874/11346 [24:27<4:49:14, 1.66s/it]
877
  8%|▊ | 875/11346 [24:29<4:50:23, 1.66s/it]
878
  8%|▊ | 876/11346 [24:30<4:51:25, 1.67s/it]
879
  8%|▊ | 877/11346 [24:32<4:52:09, 1.67s/it]
880
  8%|▊ | 878/11346 [24:34<4:52:06, 1.67s/it]
881
  8%|▊ | 879/11346 [24:35<4:52:55, 1.68s/it]
882
  8%|▊ | 880/11346 [24:37<4:52:37, 1.68s/it]
883
  8%|▊ | 881/11346 [24:39<4:52:20, 1.68s/it]
884
  8%|▊ | 882/11346 [24:40<4:52:30, 1.68s/it]
885
  8%|▊ | 883/11346 [24:42<4:52:46, 1.68s/it]
886
  8%|▊ | 884/11346 [24:44<4:52:39, 1.68s/it]
887
  8%|▊ | 885/11346 [24:45<4:52:46, 1.68s/it]
888
  8%|▊ | 886/11346 [24:47<4:52:38, 1.68s/it]
889
  8%|▊ | 887/11346 [24:49<4:52:23, 1.68s/it]
890
  8%|▊ | 888/11346 [24:50<4:52:35, 1.68s/it]
891
  8%|▊ | 889/11346 [24:52<4:53:13, 1.68s/it]
892
  8%|▊ | 890/11346 [24:54<4:53:15, 1.68s/it]
893
  8%|▊ | 891/11346 [24:55<4:53:01, 1.68s/it]
894
  8%|▊ | 892/11346 [24:57<4:52:58, 1.68s/it]
895
  8%|▊ | 893/11346 [24:59<4:52:40, 1.68s/it]
896
  8%|▊ | 894/11346 [25:01<4:52:50, 1.68s/it]
897
  8%|▊ | 895/11346 [25:02<4:52:28, 1.68s/it]
898
  8%|▊ | 896/11346 [25:04<4:52:07, 1.68s/it]
899
  8%|▊ | 897/11346 [25:06<4:52:10, 1.68s/it]
900
  8%|▊ | 898/11346 [25:07<4:51:51, 1.68s/it]
901
  8%|▊ | 899/11346 [25:09<4:51:58, 1.68s/it]
902
  8%|▊ | 900/11346 [25:11<4:51:59, 1.68s/it]
903
  8%|▊ | 901/11346 [25:12<4:51:45, 1.68s/it]
904
  8%|▊ | 902/11346 [25:14<4:51:35, 1.68s/it]
905
  8%|▊ | 903/11346 [25:16<4:51:44, 1.68s/it]
906
  8%|▊ | 904/11346 [25:17<4:51:24, 1.67s/it]
907
  8%|▊ | 905/11346 [25:19<4:51:19, 1.67s/it]
908
  8%|▊ | 906/11346 [25:21<4:51:39, 1.68s/it]
909
  8%|▊ | 907/11346 [25:22<4:51:33, 1.68s/it]
910
  8%|▊ | 908/11346 [25:24<4:51:36, 1.68s/it]
911
  8%|▊ | 909/11346 [25:26<4:51:44, 1.68s/it]
912
  8%|▊ | 910/11346 [25:27<4:51:53, 1.68s/it]
913
  8%|▊ | 911/11346 [25:29<4:51:47, 1.68s/it]
914
  8%|▊ | 912/11346 [25:31<4:51:38, 1.68s/it]
915
  8%|▊ | 913/11346 [25:32<4:51:39, 1.68s/it]
916
  8%|▊ | 914/11346 [25:34<4:51:36, 1.68s/it]
917
  8%|▊ | 915/11346 [25:36<4:51:14, 1.68s/it]
918
  8%|▊ | 916/11346 [25:37<4:51:21, 1.68s/it]
919
  8%|▊ | 917/11346 [25:39<4:51:13, 1.68s/it]
920
  8%|▊ | 918/11346 [25:41<4:51:13, 1.68s/it]
921
  8%|▊ | 919/11346 [25:42<4:51:11, 1.68s/it]
922
  8%|▊ | 920/11346 [25:44<4:50:58, 1.67s/it]
923
  8%|▊ | 921/11346 [25:46<4:50:41, 1.67s/it]
924
  8%|▊ | 922/11346 [25:47<4:50:43, 1.67s/it]
925
  8%|▊ | 923/11346 [25:49<4:50:50, 1.67s/it]
926
  8%|▊ | 924/11346 [25:51<4:50:00, 1.67s/it]
927
  8%|▊ | 925/11346 [25:52<4:49:06, 1.66s/it]
928
  8%|▊ | 926/11346 [25:54<4:48:28, 1.66s/it]
929
  8%|▊ | 927/11346 [25:56<4:49:21, 1.67s/it]
930
  8%|▊ | 928/11346 [25:57<4:49:41, 1.67s/it]
931
  8%|▊ | 929/11346 [25:59<4:49:47, 1.67s/it]
932
  8%|▊ | 930/11346 [26:01<4:50:23, 1.67s/it]
933
  8%|▊ | 931/11346 [26:02<4:50:44, 1.67s/it]
934
  8%|▊ | 932/11346 [26:04<4:50:59, 1.68s/it]
935
  8%|▊ | 933/11346 [26:06<4:51:13, 1.68s/it]
936
  8%|▊ | 934/11346 [26:08<4:51:35, 1.68s/it]
937
  8%|▊ | 935/11346 [26:09<4:51:26, 1.68s/it]
938
  8%|▊ | 936/11346 [26:11<4:51:53, 1.68s/it]
939
  8%|▊ | 937/11346 [26:13<4:51:13, 1.68s/it]
940
  8%|▊ | 938/11346 [26:14<4:51:23, 1.68s/it]
941
  8%|▊ | 939/11346 [26:16<4:50:59, 1.68s/it]
942
  8%|▊ | 940/11346 [26:18<4:51:04, 1.68s/it]
943
  8%|▊ | 941/11346 [26:19<4:50:42, 1.68s/it]
944
  8%|▊ | 942/11346 [26:21<4:50:25, 1.67s/it]
945
  8%|▊ | 943/11346 [26:23<4:50:25, 1.68s/it]
946
  8%|▊ | 944/11346 [26:24<4:50:40, 1.68s/it]
947
  8%|▊ | 945/11346 [26:26<4:50:35, 1.68s/it]
948
  8%|▊ | 946/11346 [26:28<4:50:44, 1.68s/it]
949
  8%|▊ | 947/11346 [26:29<4:50:50, 1.68s/it]
950
  8%|▊ | 948/11346 [26:31<4:50:59, 1.68s/it]
951
  8%|▊ | 949/11346 [26:33<4:50:40, 1.68s/it]
952
  8%|▊ | 950/11346 [26:34<4:50:36, 1.68s/it]
953
  8%|▊ | 951/11346 [26:36<4:50:42, 1.68s/it]
954
  8%|▊ | 952/11346 [26:38<4:50:17, 1.68s/it]
955
  8%|▊ | 953/11346 [26:39<4:50:12, 1.68s/it]
956
  8%|▊ | 954/11346 [26:41<4:50:11, 1.68s/it]
957
  8%|▊ | 955/11346 [26:43<4:50:10, 1.68s/it]
958
  8%|▊ | 956/11346 [26:44<4:50:10, 1.68s/it]
959
  8%|▊ | 957/11346 [26:46<4:50:18, 1.68s/it]
960
  8%|▊ | 958/11346 [26:48<4:50:12, 1.68s/it]
961
  8%|▊ | 959/11346 [26:49<4:49:16, 1.67s/it]
962
  8%|▊ | 960/11346 [26:51<4:48:29, 1.67s/it]
963
  8%|▊ | 961/11346 [26:53<4:48:08, 1.66s/it]
964
  8%|▊ | 962/11346 [26:54<4:47:46, 1.66s/it]
965
  8%|▊ | 963/11346 [26:56<4:47:19, 1.66s/it]
966
  8%|▊ | 964/11346 [26:58<4:46:57, 1.66s/it]
967
  9%|▊ | 965/11346 [26:59<4:46:44, 1.66s/it]
968
  9%|▊ | 966/11346 [27:01<4:46:35, 1.66s/it]
969
  9%|▊ | 967/11346 [27:03<4:46:30, 1.66s/it]
970
  9%|▊ | 968/11346 [27:04<4:46:48, 1.66s/it]
971
  9%|▊ | 969/11346 [27:06<4:47:47, 1.66s/it]
972
  9%|▊ | 970/11346 [27:08<4:48:03, 1.67s/it]
973
  9%|▊ | 971/11346 [27:09<4:48:29, 1.67s/it]
974
  9%|▊ | 972/11346 [27:11<4:48:49, 1.67s/it]
975
  9%|▊ | 973/11346 [27:13<4:49:01, 1.67s/it]
976
  9%|▊ | 974/11346 [27:14<4:49:08, 1.67s/it]
977
  9%|▊ | 975/11346 [27:16<4:49:18, 1.67s/it]
978
  9%|▊ | 976/11346 [27:18<4:49:31, 1.68s/it]
979
  9%|▊ | 977/11346 [27:19<4:49:28, 1.68s/it]
980
  9%|▊ | 978/11346 [27:21<4:49:20, 1.67s/it]
981
  9%|▊ | 979/11346 [27:23<4:49:30, 1.68s/it]
982
  9%|▊ | 980/11346 [27:24<4:49:38, 1.68s/it]
983
  9%|▊ | 981/11346 [27:26<4:49:21, 1.68s/it]
984
  9%|▊ | 982/11346 [27:28<4:49:27, 1.68s/it]
985
  9%|▊ | 983/11346 [27:29<4:49:37, 1.68s/it]
986
  9%|▊ | 984/11346 [27:31<4:49:31, 1.68s/it]
987
  9%|▊ | 985/11346 [27:33<4:49:24, 1.68s/it]
988
  9%|▊ | 986/11346 [27:34<4:49:08, 1.67s/it]
989
  9%|▊ | 987/11346 [27:36<4:49:02, 1.67s/it]
990
  9%|▊ | 988/11346 [27:38<4:49:15, 1.68s/it]
991
  9%|▊ | 989/11346 [27:39<4:48:55, 1.67s/it]
992
  9%|▊ | 990/11346 [27:41<4:48:56, 1.67s/it]
993
  9%|▊ | 991/11346 [27:43<4:48:55, 1.67s/it]
994
  9%|▊ | 992/11346 [27:45<4:49:00, 1.67s/it]
995
  9%|▉ | 993/11346 [27:46<4:49:17, 1.68s/it]
996
  9%|▉ | 994/11346 [27:48<4:49:04, 1.68s/it]
997
  9%|▉ | 995/11346 [27:50<4:49:10, 1.68s/it]
998
  9%|▉ | 996/11346 [27:51<4:49:07, 1.68s/it]
999
  9%|▉ | 997/11346 [27:53<4:49:17, 1.68s/it]
1000
  9%|▉ | 998/11346 [27:55<4:49:20, 1.68s/it]
1001
  9%|▉ | 999/11346 [27:56<4:49:15, 1.68s/it]
1002
  9%|▉ | 1000/11346 [27:58<4:49:43, 1.68s/it]
1003
 
1004
  9%|▉ | 1000/11346 [27:58<4:49:43, 1.68s/it][INFO|trainer.py:3662] 2024-06-04 01:29:49,519 >> ***** Running Evaluation *****
 
 
 
 
 
 
1005
  0%| | 0/39 [00:00<?, ?it/s]
 
1006
  5%|▌ | 2/39 [00:02<00:54, 1.48s/it]
 
1007
  8%|▊ | 3/39 [00:05<01:15, 2.10s/it]
 
1008
  10%|█ | 4/39 [00:08<01:24, 2.42s/it]
 
1009
  13%|█▎ | 5/39 [00:11<01:28, 2.61s/it]
 
1010
  15%|█▌ | 6/39 [00:14<01:29, 2.72s/it]
 
1011
  18%|█▊ | 7/39 [00:17<01:29, 2.80s/it]
 
1012
  21%|██ | 8/39 [00:20<01:28, 2.85s/it]
 
1013
  23%|██▎ | 9/39 [00:23<01:26, 2.88s/it]
 
1014
  26%|██▌ | 10/39 [00:26<01:24, 2.91s/it]
 
1015
  28%|██▊ | 11/39 [00:29<01:21, 2.92s/it]
 
1016
  31%|███ | 12/39 [00:32<01:19, 2.93s/it]
 
1017
  33%|███▎ | 13/39 [00:35<01:16, 2.94s/it]
 
1018
  36%|███▌ | 14/39 [00:38<01:13, 2.95s/it]
 
1019
  38%|███▊ | 15/39 [00:41<01:10, 2.95s/it]
 
1020
  41%|████ | 16/39 [00:44<01:07, 2.95s/it]
 
1021
  44%|████▎ | 17/39 [00:47<01:04, 2.95s/it]
 
1022
  46%|████▌ | 18/39 [00:50<01:01, 2.94s/it]
 
1023
  49%|████▊ | 19/39 [00:53<00:58, 2.94s/it]
 
1024
  51%|█████▏ | 20/39 [00:56<00:55, 2.94s/it]
 
1025
  54%|█████▍ | 21/39 [00:59<00:52, 2.94s/it]
 
1026
  56%|█████▋ | 22/39 [01:02<00:50, 2.94s/it]
 
1027
  59%|█████▉ | 23/39 [01:04<00:47, 2.94s/it]
 
1028
  62%|██████▏ | 24/39 [01:07<00:44, 2.94s/it]
 
1029
  64%|██████▍ | 25/39 [01:10<00:41, 2.94s/it]
 
1030
  67%|██████▋ | 26/39 [01:13<00:38, 2.94s/it]
 
1031
  69%|██████▉ | 27/39 [01:16<00:35, 2.94s/it]
 
1032
  72%|███████▏ | 28/39 [01:19<00:32, 2.94s/it]
 
1033
  74%|███████▍ | 29/39 [01:22<00:29, 2.94s/it]
 
1034
  77%|███████▋ | 30/39 [01:25<00:26, 2.94s/it]
 
1035
  79%|███████▉ | 31/39 [01:28<00:23, 2.94s/it]
 
1036
  82%|████████▏ | 32/39 [01:31<00:20, 2.95s/it]
 
1037
  85%|████████▍ | 33/39 [01:34<00:17, 2.95s/it]
 
1038
  87%|████████▋ | 34/39 [01:37<00:14, 2.96s/it]
 
1039
  90%|████████▉ | 35/39 [01:40<00:11, 2.96s/it]
 
1040
  92%|█████████▏| 36/39 [01:43<00:08, 2.96s/it]
 
1041
  95%|█████████▍| 37/39 [01:46<00:05, 2.96s/it]
 
1042
  97%|█████████▋| 38/39 [01:49<00:02, 2.93s/it]
 
 
1043
 
1044
 
 
1045
  9%|▉ | 1000/11346 [30:07<4:49:43, 1.68s/it]
 
1046
  [INFO|trainer.py:3353] 2024-06-04 01:31:58,493 >> Saving model checkpoint to ./training_outputs_job_116987_1_04-06_01-01/checkpoint-1000
 
 
 
 
 
 
 
 
 
 
1
+ 2024-06-04 01:01:39.001875: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2
+ 2024-06-04 01:01:39.054364: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
3
+ 2024-06-04 01:01:39.054415: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
4
+ 2024-06-04 01:01:39.055904: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
5
+ 2024-06-04 01:01:39.063872: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
6
+ To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
7
+ 2024-06-04 01:01:41.050561: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
8
+ 06/04/2024 01:01:46 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 6, distributed training: False, 16-bits training: False
9
+ 06/04/2024 01:01:46 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
10
+ _n_gpu=6,
11
+ accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None},
12
+ adafactor=False,
13
+ adam_beta1=0.9,
14
+ adam_beta2=0.999,
15
+ adam_epsilon=1e-08,
16
+ auto_find_batch_size=False,
17
+ bf16=False,
18
+ bf16_full_eval=False,
19
+ data_seed=None,
20
+ dataloader_drop_last=False,
21
+ dataloader_num_workers=0,
22
+ dataloader_persistent_workers=False,
23
+ dataloader_pin_memory=True,
24
+ dataloader_prefetch_factor=None,
25
+ ddp_backend=None,
26
+ ddp_broadcast_buffers=None,
27
+ ddp_bucket_cap_mb=None,
28
+ ddp_find_unused_parameters=None,
29
+ ddp_timeout=1800,
30
+ debug=[],
31
+ deepspeed=None,
32
+ disable_tqdm=False,
33
+ dispatch_batches=None,
34
+ do_eval=True,
35
+ do_predict=False,
36
+ do_train=True,
37
+ eval_accumulation_steps=None,
38
+ eval_delay=0,
39
+ eval_do_concat_batches=True,
40
+ eval_steps=1000,
41
+ eval_strategy=steps,
42
+ evaluation_strategy=None,
43
+ fp16=False,
44
+ fp16_backend=auto,
45
+ fp16_full_eval=False,
46
+ fp16_opt_level=O1,
47
+ fsdp=[],
48
+ fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
49
+ fsdp_min_num_params=0,
50
+ fsdp_transformer_layer_cls_to_wrap=None,
51
+ full_determinism=False,
52
+ gradient_accumulation_steps=1,
53
+ gradient_checkpointing=False,
54
+ gradient_checkpointing_kwargs=None,
55
+ greater_is_better=None,
56
+ group_by_length=False,
57
+ half_precision_backend=auto,
58
+ hub_always_push=False,
59
+ hub_model_id=DorinSht/recreate_llama_68M_vanilla,
60
+ hub_private_repo=False,
61
+ hub_strategy=every_save,
62
+ hub_token=<HUB_TOKEN>,
63
+ ignore_data_skip=False,
64
+ include_inputs_for_metrics=False,
65
+ include_num_input_tokens_seen=False,
66
+ include_tokens_per_second=False,
67
+ jit_mode_eval=False,
68
+ label_names=None,
69
+ label_smoothing_factor=0.0,
70
+ learning_rate=0.0001,
71
+ length_column_name=length,
72
+ load_best_model_at_end=False,
73
+ local_rank=0,
74
+ log_level=passive,
75
+ log_level_replica=warning,
76
+ log_on_each_node=True,
77
+ logging_dir=./training_outputs_job_116987_1_04-06_01-01,
78
+ logging_first_step=False,
79
+ logging_nan_inf_filter=True,
80
+ logging_steps=500,
81
+ logging_strategy=steps,
82
+ lr_scheduler_kwargs={},
83
+ lr_scheduler_type=linear,
84
+ max_grad_norm=1.0,
85
+ max_steps=-1,
86
+ metric_for_best_model=None,
87
+ mp_parameters=,
88
+ neftune_noise_alpha=None,
89
+ no_cuda=False,
90
+ num_train_epochs=3.0,
91
+ optim=adamw_torch,
92
+ optim_args=None,
93
+ optim_target_modules=None,
94
+ output_dir=./training_outputs_job_116987_1_04-06_01-01,
95
+ overwrite_output_dir=True,
96
+ past_index=-1,
97
+ per_device_eval_batch_size=8,
98
+ per_device_train_batch_size=4,
99
+ prediction_loss_only=False,
100
+ push_to_hub=True,
101
+ push_to_hub_model_id=None,
102
+ push_to_hub_organization=None,
103
+ push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
104
+ ray_scope=last,
105
+ remove_unused_columns=True,
106
+ report_to=['tensorboard'],
107
+ restore_callback_states_from_checkpoint=False,
108
+ resume_from_checkpoint=None,
109
+ run_name=/home/dshteyma/target_draft_coupling_code/target_draft_training/training_outputs,
110
+ save_on_each_node=False,
111
+ save_only_model=False,
112
+ save_safetensors=True,
113
+ save_steps=1000,
114
+ save_strategy=steps,
115
+ save_total_limit=None,
116
+ seed=42,
117
+ skip_memory_metrics=True,
118
+ split_batches=None,
119
+ tf32=None,
120
+ torch_compile=False,
121
+ torch_compile_backend=None,
122
+ torch_compile_mode=None,
123
+ torchdynamo=None,
124
+ tpu_metrics_debug=False,
125
+ tpu_num_cores=None,
126
+ use_cpu=False,
127
+ use_ipex=False,
128
+ use_legacy_prediction_loop=False,
129
+ use_mps_device=False,
130
+ warmup_ratio=0.05,
131
+ warmup_steps=0,
132
+ weight_decay=0.01,
133
+ )
134
+ 06/04/2024 01:01:47 - INFO - datasets.builder - Using custom data configuration default-afe4b27d28cbdcb1
135
+ Using custom data configuration default-afe4b27d28cbdcb1
136
+ Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
137
+ 06/04/2024 01:01:47 - INFO - datasets.info - Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
138
+ 06/04/2024 01:01:47 - INFO - datasets.builder - Overwrite dataset info from restored data version if exists.
139
+ Overwrite dataset info from restored data version if exists.
140
+ Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
141
+ 06/04/2024 01:01:47 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
142
+ 06/04/2024 01:01:47 - INFO - datasets.builder - Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
143
+ Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
144
+ Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
145
+ 06/04/2024 01:01:47 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
146
+ 06/04/2024 01:01:47 - INFO - datasets.builder - Using custom data configuration default-afe4b27d28cbdcb1
147
+ Using custom data configuration default-afe4b27d28cbdcb1
148
+ Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
149
+ 06/04/2024 01:01:47 - INFO - datasets.info - Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
150
+ 06/04/2024 01:01:47 - INFO - datasets.builder - Overwrite dataset info from restored data version if exists.
151
+ Overwrite dataset info from restored data version if exists.
152
+ Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
153
+ 06/04/2024 01:01:47 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
154
+ 06/04/2024 01:01:47 - INFO - datasets.builder - Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
155
+ Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
156
+ Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
157
+ 06/04/2024 01:01:47 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
158
+ 06/04/2024 01:01:48 - INFO - datasets.builder - Using custom data configuration default-afe4b27d28cbdcb1
159
+ Using custom data configuration default-afe4b27d28cbdcb1
160
+ Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
161
+ 06/04/2024 01:01:48 - INFO - datasets.info - Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
162
+ 06/04/2024 01:01:48 - INFO - datasets.builder - Overwrite dataset info from restored data version if exists.
163
+ Overwrite dataset info from restored data version if exists.
164
+ Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
165
+ 06/04/2024 01:01:48 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
166
+ 06/04/2024 01:01:48 - INFO - datasets.builder - Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
167
+ Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
168
+ Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
169
+ 06/04/2024 01:01:48 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
170
+ [INFO|configuration_utils.py:726] 2024-06-04 01:01:48,499 >> loading configuration file config.json from cache at /home/dshteyma/.cache/huggingface/hub/models--JackFram--llama-68m/snapshots/964a5d77df908b69f8d6476fb70e940425b04cb5/config.json
171
+ [INFO|configuration_utils.py:789] 2024-06-04 01:01:48,501 >> Model config LlamaConfig {
172
+ "_name_or_path": "JackFram/llama-68m",
173
+ "architectures": [
174
+ "LlamaForCausalLM"
175
+ ],
176
+ "attention_bias": false,
177
+ "attention_dropout": 0.0,
178
+ "bos_token_id": 0,
179
+ "eos_token_id": 2,
180
+ "hidden_act": "silu",
181
+ "hidden_size": 768,
182
+ "initializer_range": 0.02,
183
+ "intermediate_size": 3072,
184
+ "max_position_embeddings": 2048,
185
+ "model_type": "llama",
186
+ "num_attention_heads": 12,
187
+ "num_hidden_layers": 2,
188
+ "num_key_value_heads": 12,
189
+ "pad_token_id": 1,
190
+ "pretraining_tp": 1,
191
+ "rms_norm_eps": 1e-06,
192
+ "rope_scaling": null,
193
+ "rope_theta": 10000.0,
194
+ "tie_word_embeddings": false,
195
+ "torch_dtype": "float32",
196
+ "transformers_version": "4.41.0.dev0",
197
+ "use_cache": true,
198
+ "vocab_size": 32000
199
+ }
200
+
201
+ [INFO|tokenization_utils_base.py:2102] 2024-06-04 01:01:48,634 >> loading file tokenizer.model from cache at /home/dshteyma/.cache/huggingface/hub/models--JackFram--llama-68m/snapshots/964a5d77df908b69f8d6476fb70e940425b04cb5/tokenizer.model
202
+ [INFO|tokenization_utils_base.py:2102] 2024-06-04 01:01:48,635 >> loading file tokenizer.json from cache at None
203
+ [INFO|tokenization_utils_base.py:2102] 2024-06-04 01:01:48,635 >> loading file added_tokens.json from cache at None
204
+ [INFO|tokenization_utils_base.py:2102] 2024-06-04 01:01:48,635 >> loading file special_tokens_map.json from cache at /home/dshteyma/.cache/huggingface/hub/models--JackFram--llama-68m/snapshots/964a5d77df908b69f8d6476fb70e940425b04cb5/special_tokens_map.json
205
+ [INFO|tokenization_utils_base.py:2102] 2024-06-04 01:01:48,635 >> loading file tokenizer_config.json from cache at /home/dshteyma/.cache/huggingface/hub/models--JackFram--llama-68m/snapshots/964a5d77df908b69f8d6476fb70e940425b04cb5/tokenizer_config.json
206
+ [WARNING|logging.py:329] 2024-06-04 01:01:48,636 >> You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.LlamaTokenizer'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565
207
+ [WARNING|logging.py:329] 2024-06-04 01:01:48,716 >> You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565
208
+ [INFO|configuration_utils.py:936] 2024-06-04 01:01:49,214 >> Generate config GenerationConfig {
209
+ "bos_token_id": 0,
210
+ "eos_token_id": 2,
211
+ "pad_token_id": 1
212
+ }
213
+
214
+ 06/04/2024 01:01:50 - INFO - __main__ - Training new model from scratch - Total size=64.88M params
215
+ 06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-988d048fea8d2473.arrow
216
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-988d048fea8d2473.arrow
217
+ 06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-4e281c930893bca9.arrow
218
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-4e281c930893bca9.arrow
219
+ 06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-3fe350bccdda6078.arrow
220
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-3fe350bccdda6078.arrow
221
+ 06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-35d09b588a0c62b9.arrow
222
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-35d09b588a0c62b9.arrow
223
+ 06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-4e5279ee31a5d8d3.arrow
224
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-4e5279ee31a5d8d3.arrow
225
+ 06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-63d56456928edd43.arrow
226
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-63d56456928edd43.arrow
227
+ 06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-6a784a78d9818240.arrow
228
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-6a784a78d9818240.arrow
229
+ 06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-46540f58a00a92bf.arrow
230
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-46540f58a00a92bf.arrow
231
+ 06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-73605724efaea9d2.arrow
232
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-73605724efaea9d2.arrow
233
+ 06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-83d3df87e1b82021.arrow
234
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-83d3df87e1b82021.arrow
235
+ 06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-efdbb02491aa6344.arrow
236
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-efdbb02491aa6344.arrow
237
+ 06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-0cf2ae38fef927f3.arrow
238
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-0cf2ae38fef927f3.arrow
239
+ 06/04/2024 01:01:50 - WARNING - accelerate.utils.other - Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
240
+ [INFO|trainer.py:2068] 2024-06-04 01:01:51,038 >> ***** Running training *****
241
+ [INFO|trainer.py:2069] 2024-06-04 01:01:51,038 >> Num examples = 90,745
242
+ [INFO|trainer.py:2070] 2024-06-04 01:01:51,038 >> Num Epochs = 3
243
+ [INFO|trainer.py:2071] 2024-06-04 01:01:51,038 >> Instantaneous batch size per device = 4
244
+ [INFO|trainer.py:2073] 2024-06-04 01:01:51,038 >> Training with DataParallel so batch size has been adjusted to: 24
245
+ [INFO|trainer.py:2074] 2024-06-04 01:01:51,038 >> Total train batch size (w. parallel, distributed & accumulation) = 24
246
+ [INFO|trainer.py:2075] 2024-06-04 01:01:51,038 >> Gradient Accumulation steps = 1
247
+ [INFO|trainer.py:2076] 2024-06-04 01:01:51,038 >> Total optimization steps = 11,346
248
+ [INFO|trainer.py:2077] 2024-06-04 01:01:51,038 >> Number of trainable parameters = 68,030,208
249
+
250
  0%| | 0/11346 [00:00<?, ?it/s]/home/dshteyma/miniconda3/lib/python3.9/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.
251
+ warnings.warn('Was asked to gather along dimension 0, but all '
252
+
253
  0%| | 1/11346 [00:04<15:05:26, 4.79s/it]
254
  0%| | 2/11346 [00:06<9:21:06, 2.97s/it]
255
  0%| | 3/11346 [00:08<7:30:15, 2.38s/it]
256
  0%| | 4/11346 [00:09<6:37:25, 2.10s/it]
257
  0%| | 5/11346 [00:11<6:07:24, 1.94s/it]
258
  0%| | 6/11346 [00:13<5:48:09, 1.84s/it]
259
  0%| | 7/11346 [00:14<5:35:53, 1.78s/it]
260
  0%| | 8/11346 [00:16<5:30:15, 1.75s/it]
261
  0%| | 9/11346 [00:18<5:24:26, 1.72s/it]
262
  0%| | 10/11346 [00:19<5:20:12, 1.69s/it]
263
  0%| | 11/11346 [00:21<5:19:03, 1.69s/it]
264
  0%| | 12/11346 [00:23<5:16:19, 1.67s/it]
265
  0%| | 13/11346 [00:24<5:14:47, 1.67s/it]
266
  0%| | 14/11346 [00:26<5:15:45, 1.67s/it]
267
  0%| | 15/11346 [00:28<5:15:55, 1.67s/it]
268
  0%| | 16/11346 [00:29<5:16:01, 1.67s/it]
269
  0%| | 17/11346 [00:31<5:14:59, 1.67s/it]
270
  0%| | 18/11346 [00:33<5:13:43, 1.66s/it]
271
  0%| | 19/11346 [00:34<5:12:42, 1.66s/it]
272
  0%| | 20/11346 [00:36<5:11:52, 1.65s/it]
273
  0%| | 21/11346 [00:37<5:11:11, 1.65s/it]
274
  0%| | 22/11346 [00:39<5:10:54, 1.65s/it]
275
  0%| | 23/11346 [00:41<5:10:37, 1.65s/it]
276
  0%| | 24/11346 [00:42<5:10:31, 1.65s/it]
277
  0%| | 25/11346 [00:44<5:10:24, 1.65s/it]
278
  0%| | 26/11346 [00:46<5:10:12, 1.64s/it]
279
  0%| | 27/11346 [00:47<5:11:36, 1.65s/it]
280
  0%| | 28/11346 [00:49<5:11:16, 1.65s/it]
281
  0%| | 29/11346 [00:51<5:10:53, 1.65s/it]
282
  0%| | 30/11346 [00:52<5:10:39, 1.65s/it]
283
  0%| | 31/11346 [00:54<5:10:26, 1.65s/it]
284
  0%| | 32/11346 [00:56<5:10:17, 1.65s/it]
285
  0%| | 33/11346 [00:57<5:10:09, 1.64s/it]
286
  0%| | 34/11346 [00:59<5:10:07, 1.64s/it]
287
  0%| | 35/11346 [01:01<5:09:56, 1.64s/it]
288
  0%| | 36/11346 [01:02<5:09:53, 1.64s/it]
289
  0%| | 37/11346 [01:04<5:09:51, 1.64s/it]
290
  0%| | 38/11346 [01:05<5:09:44, 1.64s/it]
291
  0%| | 39/11346 [01:07<5:09:40, 1.64s/it]
292
  0%| | 40/11346 [01:09<5:09:35, 1.64s/it]
293
  0%| | 41/11346 [01:10<5:09:32, 1.64s/it]
294
  0%| | 42/11346 [01:12<5:09:25, 1.64s/it]
295
  0%| | 43/11346 [01:14<5:09:27, 1.64s/it]
296
  0%| | 44/11346 [01:15<5:09:44, 1.64s/it]
297
  0%| | 45/11346 [01:17<5:09:45, 1.64s/it]
298
  0%| | 46/11346 [01:19<5:09:40, 1.64s/it]
299
  0%| | 47/11346 [01:20<5:09:36, 1.64s/it]
300
  0%| | 48/11346 [01:22<5:09:32, 1.64s/it]
301
  0%| | 49/11346 [01:24<5:09:30, 1.64s/it]
302
  0%| | 50/11346 [01:25<5:09:30, 1.64s/it]
303
  0%| | 51/11346 [01:27<5:09:30, 1.64s/it]
304
  0%| | 52/11346 [01:28<5:09:24, 1.64s/it]
305
  0%| | 53/11346 [01:30<5:09:22, 1.64s/it]
306
  0%| | 54/11346 [01:32<5:09:22, 1.64s/it]
307
  0%| | 55/11346 [01:33<5:09:26, 1.64s/it]
308
  0%| | 56/11346 [01:35<5:09:35, 1.65s/it]
309
  1%| | 57/11346 [01:37<5:09:41, 1.65s/it]
310
  1%| | 58/11346 [01:38<5:09:36, 1.65s/it]
311
  1%| | 59/11346 [01:40<5:09:28, 1.65s/it]
312
  1%| | 60/11346 [01:42<5:09:21, 1.64s/it]
313
  1%| | 61/11346 [01:43<5:09:45, 1.65s/it]
314
  1%| | 62/11346 [01:45<5:09:30, 1.65s/it]
315
  1%| | 63/11346 [01:47<5:09:21, 1.65s/it]
316
  1%| | 64/11346 [01:48<5:09:16, 1.64s/it]
317
  1%| | 65/11346 [01:50<5:09:11, 1.64s/it]
318
  1%| | 66/11346 [01:52<5:09:06, 1.64s/it]
319
  1%| | 67/11346 [01:53<5:09:05, 1.64s/it]
320
  1%| | 68/11346 [01:55<5:10:50, 1.65s/it]
321
  1%| | 69/11346 [01:57<5:11:57, 1.66s/it]
322
  1%| | 70/11346 [01:58<5:11:27, 1.66s/it]
323
  1%| | 71/11346 [02:00<5:10:43, 1.65s/it]
324
  1%| | 72/11346 [02:01<5:10:09, 1.65s/it]
325
  1%| | 73/11346 [02:03<5:09:46, 1.65s/it]
326
  1%| | 74/11346 [02:05<5:09:27, 1.65s/it]
327
  1%| | 75/11346 [02:06<5:09:07, 1.65s/it]
328
  1%| | 76/11346 [02:08<5:08:57, 1.64s/it]
329
  1%| | 77/11346 [02:10<5:08:54, 1.64s/it]
330
  1%| | 78/11346 [02:11<5:08:52, 1.64s/it]
331
  1%| | 79/11346 [02:13<5:08:52, 1.64s/it]
332
  1%| | 80/11346 [02:15<5:08:52, 1.64s/it]
333
  1%| | 81/11346 [02:16<5:08:47, 1.64s/it]
334
  1%| | 82/11346 [02:18<5:08:40, 1.64s/it]
335
  1%| | 83/11346 [02:20<5:08:40, 1.64s/it]
336
  1%| | 84/11346 [02:21<5:08:33, 1.64s/it]
337
  1%| | 85/11346 [02:23<5:08:32, 1.64s/it]
338
  1%| | 86/11346 [02:25<5:12:04, 1.66s/it]
339
  1%| | 87/11346 [02:26<5:13:39, 1.67s/it]
340
  1%| | 88/11346 [02:28<5:15:04, 1.68s/it]
341
  1%| | 89/11346 [02:30<5:14:52, 1.68s/it]
342
  1%| | 90/11346 [02:31<5:15:18, 1.68s/it]
343
  1%| | 91/11346 [02:33<5:15:25, 1.68s/it]
344
  1%| | 92/11346 [02:35<5:16:00, 1.68s/it]
345
  1%| | 93/11346 [02:36<5:16:22, 1.69s/it]
346
  1%| | 94/11346 [02:38<5:15:59, 1.68s/it]
347
  1%| | 95/11346 [02:40<5:16:37, 1.69s/it]
348
  1%| | 96/11346 [02:41<5:16:52, 1.69s/it]
349
  1%| | 97/11346 [02:43<5:16:53, 1.69s/it]
350
  1%| | 98/11346 [02:45<5:16:50, 1.69s/it]
351
  1%| | 99/11346 [02:46<5:16:42, 1.69s/it]
352
  1%| | 100/11346 [02:48<5:16:32, 1.69s/it]
353
  1%| | 101/11346 [02:50<5:16:02, 1.69s/it]
354
  1%| | 102/11346 [02:52<5:16:21, 1.69s/it]
355
  1%| | 103/11346 [02:53<5:16:22, 1.69s/it]
356
  1%| | 104/11346 [02:55<5:16:56, 1.69s/it]
357
  1%| | 105/11346 [02:57<5:17:05, 1.69s/it]
358
  1%| | 106/11346 [02:58<5:16:58, 1.69s/it]
359
  1%| | 107/11346 [03:00<5:17:08, 1.69s/it]
360
  1%| | 108/11346 [03:02<5:17:07, 1.69s/it]
361
  1%| | 109/11346 [03:03<5:16:39, 1.69s/it]
362
  1%| | 110/11346 [03:05<5:16:25, 1.69s/it]
363
  1%| | 111/11346 [03:07<5:16:27, 1.69s/it]
364
  1%| | 112/11346 [03:08<5:16:08, 1.69s/it]
365
  1%| | 113/11346 [03:10<5:15:47, 1.69s/it]
366
  1%| | 114/11346 [03:12<5:15:59, 1.69s/it]
367
  1%| | 115/11346 [03:14<5:16:09, 1.69s/it]
368
  1%| | 116/11346 [03:15<5:15:54, 1.69s/it]
369
  1%| | 117/11346 [03:17<5:16:14, 1.69s/it]
370
  1%| | 118/11346 [03:19<5:16:21, 1.69s/it]
371
  1%| | 119/11346 [03:20<5:16:37, 1.69s/it]
372
  1%| | 120/11346 [03:22<5:15:42, 1.69s/it]
373
  1%| | 121/11346 [03:24<5:15:53, 1.69s/it]
374
  1%| | 122/11346 [03:25<5:15:52, 1.69s/it]
375
  1%| | 123/11346 [03:27<5:15:37, 1.69s/it]
376
  1%| | 124/11346 [03:29<5:15:21, 1.69s/it]
377
  1%| | 125/11346 [03:30<5:15:20, 1.69s/it]
378
  1%| | 126/11346 [03:32<5:15:08, 1.69s/it]
379
  1%| | 127/11346 [03:34<5:15:16, 1.69s/it]
380
  1%| | 128/11346 [03:35<5:15:28, 1.69s/it]
381
  1%| | 129/11346 [03:37<5:15:06, 1.69s/it]
382
  1%| | 130/11346 [03:39<5:15:41, 1.69s/it]
383
  1%| | 131/11346 [03:41<5:15:22, 1.69s/it]
384
  1%| | 132/11346 [03:42<5:15:06, 1.69s/it]
385
  1%| | 133/11346 [03:44<5:15:00, 1.69s/it]
386
  1%| | 134/11346 [03:46<5:15:08, 1.69s/it]
387
  1%| | 135/11346 [03:47<5:15:12, 1.69s/it]
388
  1%| | 136/11346 [03:49<5:14:45, 1.68s/it]
389
  1%| | 137/11346 [03:51<5:13:39, 1.68s/it]
390
  1%| | 138/11346 [03:52<5:13:47, 1.68s/it]
391
  1%| | 139/11346 [03:54<5:13:33, 1.68s/it]
392
  1%| | 140/11346 [03:56<5:13:47, 1.68s/it]
393
  1%| | 141/11346 [03:57<5:13:56, 1.68s/it]
394
  1%|▏ | 142/11346 [03:59<5:14:16, 1.68s/it]
395
  1%|▏ | 143/11346 [04:01<5:13:54, 1.68s/it]
396
  1%|▏ | 144/11346 [04:02<5:13:57, 1.68s/it]
397
  1%|▏ | 145/11346 [04:04<5:13:51, 1.68s/it]
398
  1%|▏ | 146/11346 [04:06<5:14:21, 1.68s/it]
399
  1%|▏ | 147/11346 [04:07<5:15:46, 1.69s/it]
400
  1%|▏ | 148/11346 [04:09<5:16:13, 1.69s/it]
401
  1%|▏ | 149/11346 [04:11<5:15:22, 1.69s/it]
402
  1%|▏ | 150/11346 [04:13<5:16:59, 1.70s/it]
403
  1%|▏ | 151/11346 [04:14<5:17:05, 1.70s/it]
404
  1%|▏ | 152/11346 [04:16<5:16:55, 1.70s/it]
405
  1%|▏ | 153/11346 [04:18<5:17:29, 1.70s/it]
406
  1%|▏ | 154/11346 [04:19<5:17:43, 1.70s/it]
407
  1%|▏ | 155/11346 [04:21<5:16:45, 1.70s/it]
408
  1%|▏ | 156/11346 [04:23<5:17:07, 1.70s/it]
409
  1%|▏ | 157/11346 [04:24<5:17:52, 1.70s/it]
410
  1%|▏ | 158/11346 [04:26<5:16:59, 1.70s/it]
411
  1%|▏ | 159/11346 [04:28<5:17:13, 1.70s/it]
412
  1%|▏ | 160/11346 [04:30<5:17:42, 1.70s/it]
413
  1%|▏ | 161/11346 [04:31<5:17:20, 1.70s/it]
414
  1%|▏ | 162/11346 [04:33<5:16:54, 1.70s/it]
415
  1%|▏ | 163/11346 [04:35<5:15:58, 1.70s/it]
416
  1%|▏ | 164/11346 [04:36<5:16:33, 1.70s/it]
417
  1%|▏ | 165/11346 [04:38<5:16:46, 1.70s/it]
418
  1%|▏ | 166/11346 [04:40<5:16:18, 1.70s/it]
419
  1%|▏ | 167/11346 [04:41<5:15:53, 1.70s/it]
420
  1%|▏ | 168/11346 [04:43<5:15:33, 1.69s/it]
421
  1%|▏ | 169/11346 [04:45<5:16:19, 1.70s/it]
422
  1%|▏ | 170/11346 [04:47<5:15:30, 1.69s/it]
423
  2%|▏ | 171/11346 [04:48<5:15:01, 1.69s/it]
424
  2%|▏ | 172/11346 [04:50<5:15:21, 1.69s/it]
425
  2%|▏ | 173/11346 [04:52<5:14:48, 1.69s/it]
426
  2%|▏ | 174/11346 [04:53<5:16:03, 1.70s/it]
427
  2%|▏ | 175/11346 [04:55<5:15:36, 1.70s/it]
428
  2%|▏ | 176/11346 [04:57<5:15:10, 1.69s/it]
429
  2%|▏ | 177/11346 [04:58<5:15:37, 1.70s/it]
430
  2%|▏ | 178/11346 [05:00<5:15:06, 1.69s/it]
431
  2%|▏ | 179/11346 [05:02<5:14:42, 1.69s/it]
432
  2%|▏ | 180/11346 [05:03<5:15:07, 1.69s/it]
433
  2%|▏ | 181/11346 [05:05<5:15:02, 1.69s/it]
434
  2%|▏ | 182/11346 [05:07<5:14:59, 1.69s/it]
435
  2%|▏ | 183/11346 [05:09<5:14:40, 1.69s/it]
436
  2%|▏ | 184/11346 [05:10<5:15:53, 1.70s/it]
437
  2%|▏ | 185/11346 [05:12<5:15:11, 1.69s/it]
438
  2%|▏ | 186/11346 [05:14<5:14:53, 1.69s/it]
439
  2%|▏ | 187/11346 [05:15<5:15:43, 1.70s/it]
440
  2%|▏ | 188/11346 [05:17<5:15:29, 1.70s/it]
441
  2%|▏ | 189/11346 [05:19<5:15:17, 1.70s/it]
442
  2%|▏ | 190/11346 [05:20<5:15:03, 1.69s/it]
443
  2%|▏ | 191/11346 [05:22<5:14:08, 1.69s/it]
444
  2%|▏ | 192/11346 [05:24<5:14:18, 1.69s/it]
445
  2%|▏ | 193/11346 [05:25<5:14:10, 1.69s/it]
446
  2%|▏ | 194/11346 [05:27<5:13:51, 1.69s/it]
447
  2%|▏ | 195/11346 [05:29<5:13:31, 1.69s/it]
448
  2%|▏ | 196/11346 [05:31<5:14:23, 1.69s/it]
449
  2%|▏ | 197/11346 [05:32<5:15:01, 1.70s/it]
450
  2%|▏ | 198/11346 [05:34<5:15:03, 1.70s/it]
451
  2%|▏ | 199/11346 [05:36<5:14:37, 1.69s/it]
452
  2%|▏ | 200/11346 [05:37<5:14:54, 1.70s/it]
453
  2%|▏ | 201/11346 [05:39<5:14:20, 1.69s/it]
454
  2%|▏ | 202/11346 [05:41<5:14:27, 1.69s/it]
455
  2%|▏ | 203/11346 [05:42<5:13:49, 1.69s/it]
456
  2%|▏ | 204/11346 [05:44<5:13:47, 1.69s/it]
457
  2%|▏ | 205/11346 [05:46<5:13:39, 1.69s/it]
458
  2%|▏ | 206/11346 [05:47<5:13:03, 1.69s/it]
459
  2%|▏ | 207/11346 [05:49<5:13:46, 1.69s/it]
460
  2%|▏ | 208/11346 [05:51<5:13:31, 1.69s/it]
461
  2%|▏ | 209/11346 [05:53<5:13:34, 1.69s/it]
462
  2%|▏ | 210/11346 [05:54<5:13:27, 1.69s/it]
463
  2%|▏ | 211/11346 [05:56<5:12:29, 1.68s/it]
464
  2%|▏ | 212/11346 [05:58<5:13:18, 1.69s/it]
465
  2%|▏ | 213/11346 [05:59<5:12:47, 1.69s/it]
466
  2%|▏ | 214/11346 [06:01<5:12:54, 1.69s/it]
467
  2%|▏ | 215/11346 [06:03<5:12:27, 1.68s/it]
468
  2%|▏ | 216/11346 [06:04<5:13:25, 1.69s/it]
469
  2%|▏ | 217/11346 [06:06<5:13:28, 1.69s/it]
470
  2%|▏ | 218/11346 [06:08<5:13:45, 1.69s/it]
471
  2%|▏ | 219/11346 [06:09<5:12:47, 1.69s/it]
472
  2%|▏ | 220/11346 [06:11<5:13:05, 1.69s/it]
473
  2%|▏ | 221/11346 [06:13<5:13:41, 1.69s/it]
474
  2%|▏ | 222/11346 [06:14<5:13:08, 1.69s/it]
475
  2%|▏ | 223/11346 [06:16<5:12:37, 1.69s/it]
476
  2%|▏ | 224/11346 [06:18<5:12:56, 1.69s/it]
477
  2%|▏ | 225/11346 [06:20<5:12:02, 1.68s/it]
478
  2%|▏ | 226/11346 [06:21<5:12:05, 1.68s/it]
479
  2%|▏ | 227/11346 [06:23<5:13:03, 1.69s/it]
480
  2%|▏ | 228/11346 [06:25<5:12:56, 1.69s/it]
481
  2%|▏ | 229/11346 [06:26<5:12:24, 1.69s/it]
482
  2%|▏ | 230/11346 [06:28<5:12:29, 1.69s/it]
483
  2%|▏ | 231/11346 [06:30<5:12:28, 1.69s/it]
484
  2%|▏ | 232/11346 [06:31<5:12:35, 1.69s/it]
485
  2%|▏ | 233/11346 [06:33<5:13:07, 1.69s/it]
486
  2%|▏ | 234/11346 [06:35<5:12:34, 1.69s/it]
487
  2%|▏ | 235/11346 [06:36<5:12:19, 1.69s/it]
488
  2%|▏ | 236/11346 [06:38<5:12:52, 1.69s/it]
489
  2%|▏ | 237/11346 [06:40<5:12:53, 1.69s/it]
490
  2%|▏ | 238/11346 [06:41<5:13:25, 1.69s/it]
491
  2%|▏ | 239/11346 [06:43<5:13:20, 1.69s/it]
492
  2%|▏ | 240/11346 [06:45<5:11:49, 1.68s/it]
493
  2%|▏ | 241/11346 [06:47<5:12:48, 1.69s/it]
494
  2%|▏ | 242/11346 [06:48<5:12:47, 1.69s/it]
495
  2%|▏ | 243/11346 [06:50<5:13:03, 1.69s/it]
496
  2%|▏ | 244/11346 [06:52<5:13:03, 1.69s/it]
497
  2%|▏ | 245/11346 [06:53<5:12:45, 1.69s/it]
498
  2%|▏ | 246/11346 [06:55<5:12:53, 1.69s/it]
499
  2%|▏ | 247/11346 [06:57<5:12:42, 1.69s/it]
500
  2%|▏ | 248/11346 [06:58<5:11:35, 1.68s/it]
501
  2%|▏ | 249/11346 [07:00<5:11:17, 1.68s/it]
502
  2%|▏ | 250/11346 [07:02<5:11:09, 1.68s/it]
503
  2%|▏ | 251/11346 [07:03<5:11:38, 1.69s/it]
504
  2%|▏ | 252/11346 [07:05<5:11:13, 1.68s/it]
505
  2%|▏ | 253/11346 [07:07<5:11:38, 1.69s/it]
506
  2%|▏ | 254/11346 [07:08<5:10:30, 1.68s/it]
507
  2%|▏ | 255/11346 [07:10<5:10:14, 1.68s/it]
508
  2%|▏ | 256/11346 [07:12<5:10:15, 1.68s/it]
509
  2%|▏ | 257/11346 [07:13<5:09:47, 1.68s/it]
510
  2%|▏ | 258/11346 [07:15<5:10:30, 1.68s/it]
511
  2%|▏ | 259/11346 [07:17<5:11:11, 1.68s/it]
512
  2%|▏ | 260/11346 [07:19<5:10:54, 1.68s/it]
513
  2%|▏ | 261/11346 [07:20<5:10:47, 1.68s/it]
514
  2%|▏ | 262/11346 [07:22<5:10:19, 1.68s/it]
515
  2%|▏ | 263/11346 [07:24<5:10:42, 1.68s/it]
516
  2%|▏ | 264/11346 [07:25<5:10:37, 1.68s/it]
517
  2%|▏ | 265/11346 [07:27<5:10:42, 1.68s/it]
518
  2%|▏ | 266/11346 [07:29<5:11:00, 1.68s/it]
519
  2%|▏ | 267/11346 [07:30<5:11:00, 1.68s/it]
520
  2%|▏ | 268/11346 [07:32<5:11:15, 1.69s/it]
521
  2%|▏ | 269/11346 [07:34<5:10:59, 1.68s/it]
522
  2%|▏ | 270/11346 [07:35<5:11:20, 1.69s/it]
523
  2%|▏ | 271/11346 [07:37<5:11:27, 1.69s/it]
524
  2%|▏ | 272/11346 [07:39<5:11:38, 1.69s/it]
525
  2%|▏ | 273/11346 [07:40<5:11:37, 1.69s/it]
526
  2%|▏ | 274/11346 [07:42<5:11:42, 1.69s/it]
527
  2%|▏ | 275/11346 [07:44<5:11:02, 1.69s/it]
528
  2%|▏ | 276/11346 [07:46<5:10:47, 1.68s/it]
529
  2%|▏ | 277/11346 [07:47<5:11:04, 1.69s/it]
530
  2%|▏ | 278/11346 [07:49<5:11:01, 1.69s/it]
531
  2%|▏ | 279/11346 [07:51<5:10:57, 1.69s/it]
532
  2%|▏ | 280/11346 [07:52<5:10:04, 1.68s/it]
533
  2%|▏ | 281/11346 [07:54<5:09:03, 1.68s/it]
534
  2%|▏ | 282/11346 [07:56<5:10:14, 1.68s/it]
535
  2%|▏ | 283/11346 [07:57<5:10:30, 1.68s/it]
536
  3%|▎ | 284/11346 [07:59<5:09:50, 1.68s/it]
537
  3%|▎ | 285/11346 [08:01<5:09:45, 1.68s/it]
538
  3%|▎ | 286/11346 [08:02<5:11:25, 1.69s/it]
539
  3%|▎ | 287/11346 [08:04<5:11:07, 1.69s/it]
540
  3%|▎ | 288/11346 [08:06<5:10:45, 1.69s/it]
541
  3%|▎ | 289/11346 [08:07<5:10:22, 1.68s/it]
542
  3%|▎ | 290/11346 [08:09<5:09:34, 1.68s/it]
543
  3%|▎ | 291/11346 [08:11<5:09:15, 1.68s/it]
544
  3%|▎ | 292/11346 [08:12<5:08:31, 1.67s/it]
545
  3%|▎ | 293/11346 [08:14<5:09:04, 1.68s/it]
546
  3%|▎ | 294/11346 [08:16<5:09:19, 1.68s/it]
547
  3%|▎ | 295/11346 [08:17<5:09:08, 1.68s/it]
548
  3%|▎ | 296/11346 [08:19<5:09:44, 1.68s/it]
549
  3%|▎ | 297/11346 [08:21<5:10:02, 1.68s/it]
550
  3%|▎ | 298/11346 [08:23<5:10:14, 1.68s/it]
551
  3%|▎ | 299/11346 [08:24<5:10:42, 1.69s/it]
552
  3%|▎ | 300/11346 [08:26<5:10:02, 1.68s/it]
553
  3%|▎ | 301/11346 [08:28<5:09:29, 1.68s/it]
554
  3%|▎ | 302/11346 [08:29<5:09:15, 1.68s/it]
555
  3%|▎ | 303/11346 [08:31<5:09:55, 1.68s/it]
556
  3%|▎ | 304/11346 [08:33<5:09:50, 1.68s/it]
557
  3%|▎ | 305/11346 [08:34<5:08:58, 1.68s/it]
558
  3%|▎ | 306/11346 [08:36<5:08:28, 1.68s/it]
559
  3%|▎ | 307/11346 [08:38<5:08:26, 1.68s/it]
560
  3%|▎ | 308/11346 [08:39<5:09:05, 1.68s/it]
561
  3%|▎ | 309/11346 [08:41<5:09:25, 1.68s/it]
562
  3%|▎ | 310/11346 [08:43<5:09:32, 1.68s/it]
563
  3%|▎ | 311/11346 [08:44<5:09:56, 1.69s/it]
564
  3%|▎ | 312/11346 [08:46<5:09:44, 1.68s/it]
565
  3%|▎ | 313/11346 [08:48<5:09:14, 1.68s/it]
566
  3%|▎ | 314/11346 [08:49<5:09:10, 1.68s/it]
567
  3%|▎ | 315/11346 [08:51<5:08:30, 1.68s/it]
568
  3%|▎ | 316/11346 [08:53<5:08:03, 1.68s/it]
569
  3%|▎ | 317/11346 [08:54<5:08:00, 1.68s/it]
570
  3%|▎ | 318/11346 [08:56<5:07:26, 1.67s/it]
571
  3%|▎ | 319/11346 [08:58<5:07:48, 1.67s/it]
572
  3%|▎ | 320/11346 [08:59<5:07:47, 1.67s/it]
573
  3%|▎ | 321/11346 [09:01<5:07:54, 1.68s/it]
574
  3%|▎ | 322/11346 [09:03<5:08:15, 1.68s/it]
575
  3%|▎ | 323/11346 [09:05<5:08:35, 1.68s/it]
576
  3%|▎ | 324/11346 [09:06<5:07:48, 1.68s/it]
577
  3%|▎ | 325/11346 [09:08<5:07:33, 1.67s/it]
578
  3%|▎ | 326/11346 [09:10<5:07:48, 1.68s/it]
579
  3%|▎ | 327/11346 [09:11<5:08:02, 1.68s/it]
580
  3%|▎ | 328/11346 [09:13<5:08:07, 1.68s/it]
581
  3%|▎ | 329/11346 [09:15<5:08:07, 1.68s/it]
582
  3%|▎ | 330/11346 [09:16<5:07:30, 1.67s/it]
583
  3%|▎ | 331/11346 [09:18<5:07:48, 1.68s/it]
584
  3%|▎ | 332/11346 [09:20<5:07:49, 1.68s/it]
585
  3%|▎ | 333/11346 [09:21<5:07:30, 1.68s/it]
586
  3%|▎ | 334/11346 [09:23<5:07:12, 1.67s/it]
587
  3%|▎ | 335/11346 [09:25<5:07:25, 1.68s/it]
588
  3%|▎ | 336/11346 [09:26<5:08:11, 1.68s/it]
589
  3%|▎ | 337/11346 [09:28<5:08:37, 1.68s/it]
590
  3%|▎ | 338/11346 [09:30<5:08:59, 1.68s/it]
591
  3%|▎ | 339/11346 [09:31<5:09:20, 1.69s/it]
592
  3%|▎ | 340/11346 [09:33<5:08:50, 1.68s/it]
593
  3%|▎ | 341/11346 [09:35<5:08:26, 1.68s/it]
594
  3%|▎ | 342/11346 [09:36<5:08:35, 1.68s/it]
595
  3%|▎ | 343/11346 [09:38<5:07:49, 1.68s/it]
596
  3%|▎ | 344/11346 [09:40<5:08:33, 1.68s/it]
597
  3%|▎ | 345/11346 [09:41<5:08:50, 1.68s/it]
598
  3%|▎ | 346/11346 [09:43<5:07:25, 1.68s/it]
599
  3%|▎ | 347/11346 [09:45<5:07:46, 1.68s/it]
600
  3%|▎ | 348/11346 [09:46<5:07:39, 1.68s/it]
601
  3%|▎ | 349/11346 [09:48<5:07:15, 1.68s/it]
602
  3%|▎ | 350/11346 [09:50<5:07:38, 1.68s/it]
603
  3%|▎ | 351/11346 [09:51<5:06:52, 1.67s/it]
604
  3%|▎ | 352/11346 [09:53<5:07:16, 1.68s/it]
605
  3%|▎ | 353/11346 [09:55<5:07:09, 1.68s/it]
606
  3%|▎ | 354/11346 [09:57<5:06:57, 1.68s/it]
607
  3%|▎ | 355/11346 [09:58<5:07:25, 1.68s/it]
608
  3%|▎ | 356/11346 [10:00<5:07:07, 1.68s/it]
609
  3%|▎ | 357/11346 [10:02<5:07:48, 1.68s/it]
610
  3%|▎ | 358/11346 [10:03<5:07:20, 1.68s/it]
611
  3%|▎ | 359/11346 [10:05<5:07:33, 1.68s/it]
612
  3%|▎ | 360/11346 [10:07<5:08:02, 1.68s/it]
613
  3%|▎ | 361/11346 [10:08<5:07:04, 1.68s/it]
614
  3%|▎ | 362/11346 [10:10<5:07:14, 1.68s/it]
615
  3%|▎ | 363/11346 [10:12<5:06:59, 1.68s/it]
616
  3%|▎ | 364/11346 [10:13<5:07:16, 1.68s/it]
617
  3%|▎ | 365/11346 [10:15<5:06:41, 1.68s/it]
618
  3%|▎ | 366/11346 [10:17<5:06:39, 1.68s/it]
619
  3%|▎ | 367/11346 [10:18<5:06:27, 1.67s/it]
620
  3%|▎ | 368/11346 [10:20<5:06:38, 1.68s/it]
621
  3%|▎ | 369/11346 [10:22<5:06:19, 1.67s/it]
622
  3%|▎ | 370/11346 [10:23<5:06:04, 1.67s/it]
623
  3%|▎ | 371/11346 [10:25<5:06:24, 1.68s/it]
624
  3%|▎ | 372/11346 [10:27<5:06:36, 1.68s/it]
625
  3%|▎ | 373/11346 [10:28<5:06:09, 1.67s/it]
626
  3%|▎ | 374/11346 [10:30<5:06:08, 1.67s/it]
627
  3%|▎ | 375/11346 [10:32<5:06:13, 1.67s/it]
628
  3%|▎ | 376/11346 [10:33<5:06:27, 1.68s/it]
629
  3%|▎ | 377/11346 [10:35<5:06:12, 1.67s/it]
630
  3%|▎ | 378/11346 [10:37<5:05:59, 1.67s/it]
631
  3%|▎ | 379/11346 [10:38<5:06:33, 1.68s/it]
632
  3%|▎ | 380/11346 [10:40<5:06:22, 1.68s/it]
633
  3%|▎ | 381/11346 [10:42<5:05:56, 1.67s/it]
634
  3%|▎ | 382/11346 [10:43<5:05:40, 1.67s/it]
635
  3%|▎ | 383/11346 [10:45<5:04:57, 1.67s/it]
636
  3%|▎ | 384/11346 [10:47<5:05:19, 1.67s/it]
637
  3%|▎ | 385/11346 [10:48<5:06:05, 1.68s/it]
638
  3%|▎ | 386/11346 [10:50<5:05:20, 1.67s/it]
639
  3%|▎ | 387/11346 [10:52<5:05:16, 1.67s/it]
640
  3%|▎ | 388/11346 [10:53<5:05:16, 1.67s/it]
641
  3%|▎ | 389/11346 [10:55<5:05:18, 1.67s/it]
642
  3%|▎ | 390/11346 [10:57<5:05:54, 1.68s/it]
643
  3%|▎ | 391/11346 [10:59<5:06:06, 1.68s/it]
644
  3%|▎ | 392/11346 [11:00<5:05:30, 1.67s/it]
645
  3%|▎ | 393/11346 [11:02<5:05:10, 1.67s/it]
646
  3%|▎ | 394/11346 [11:04<5:05:04, 1.67s/it]
647
  3%|▎ | 395/11346 [11:05<5:05:07, 1.67s/it]
648
  3%|▎ | 396/11346 [11:07<5:04:45, 1.67s/it]
649
  3%|▎ | 397/11346 [11:09<5:04:28, 1.67s/it]
650
  4%|▎ | 398/11346 [11:10<5:04:42, 1.67s/it]
651
  4%|▎ | 399/11346 [11:12<5:05:08, 1.67s/it]
652
  4%|▎ | 400/11346 [11:14<5:05:40, 1.68s/it]
653
  4%|▎ | 401/11346 [11:15<5:05:43, 1.68s/it]
654
  4%|▎ | 402/11346 [11:17<5:05:13, 1.67s/it]
655
  4%|▎ | 403/11346 [11:19<5:05:09, 1.67s/it]
656
  4%|▎ | 404/11346 [11:20<5:05:18, 1.67s/it]
657
  4%|▎ | 405/11346 [11:22<5:05:18, 1.67s/it]
658
  4%|▎ | 406/11346 [11:24<5:04:55, 1.67s/it]
659
  4%|▎ | 407/11346 [11:25<5:04:46, 1.67s/it]
660
  4%|▎ | 408/11346 [11:27<5:05:44, 1.68s/it]
661
  4%|▎ | 409/11346 [11:29<5:05:17, 1.67s/it]
662
  4%|▎ | 410/11346 [11:30<5:05:06, 1.67s/it]
663
  4%|▎ | 411/11346 [11:32<5:04:43, 1.67s/it]
664
  4%|▎ | 412/11346 [11:34<5:04:45, 1.67s/it]
665
  4%|▎ | 413/11346 [11:35<5:04:46, 1.67s/it]
666
  4%|▎ | 414/11346 [11:37<5:04:21, 1.67s/it]
667
  4%|▎ | 415/11346 [11:39<5:04:18, 1.67s/it]
668
  4%|▎ | 416/11346 [11:40<5:04:29, 1.67s/it]
669
  4%|▎ | 417/11346 [11:42<5:21:42, 1.77s/it]
670
  4%|▎ | 418/11346 [11:44<5:16:59, 1.74s/it]
671
  4%|▎ | 419/11346 [11:46<5:13:55, 1.72s/it]
672
  4%|▎ | 420/11346 [11:47<5:10:47, 1.71s/it]
673
  4%|▎ | 421/11346 [11:49<5:08:47, 1.70s/it]
674
  4%|▎ | 422/11346 [11:51<5:07:36, 1.69s/it]
675
  4%|▎ | 423/11346 [11:52<5:06:24, 1.68s/it]
676
  4%|▎ | 424/11346 [11:54<5:05:53, 1.68s/it]
677
  4%|▎ | 425/11346 [11:56<5:04:52, 1.68s/it]
678
  4%|▍ | 426/11346 [11:57<5:04:15, 1.67s/it]
679
  4%|▍ | 427/11346 [11:59<5:04:23, 1.67s/it]
680
  4%|▍ | 428/11346 [12:01<5:04:02, 1.67s/it]
681
  4%|▍ | 429/11346 [12:02<5:03:42, 1.67s/it]
682
  4%|▍ | 430/11346 [12:04<5:03:38, 1.67s/it]
683
  4%|▍ | 431/11346 [12:06<5:03:47, 1.67s/it]
684
  4%|▍ | 432/11346 [12:07<5:03:50, 1.67s/it]
685
  4%|▍ | 433/11346 [12:09<5:03:43, 1.67s/it]
686
  4%|▍ | 434/11346 [12:11<5:03:07, 1.67s/it]
687
  4%|▍ | 435/11346 [12:12<5:03:32, 1.67s/it]
688
  4%|▍ | 436/11346 [12:14<5:04:27, 1.67s/it]
689
  4%|▍ | 437/11346 [12:16<5:03:56, 1.67s/it]
690
  4%|▍ | 438/11346 [12:17<5:03:46, 1.67s/it]
691
  4%|▍ | 439/11346 [12:19<5:03:49, 1.67s/it]
692
  4%|▍ | 440/11346 [12:21<5:03:23, 1.67s/it]
693
  4%|▍ | 441/11346 [12:22<5:03:29, 1.67s/it]
694
  4%|▍ | 442/11346 [12:24<5:03:01, 1.67s/it]
695
  4%|▍ | 443/11346 [12:26<5:02:27, 1.66s/it]
696
  4%|▍ | 444/11346 [12:27<5:02:31, 1.67s/it]
697
  4%|▍ | 445/11346 [12:29<5:02:39, 1.67s/it]
698
  4%|▍ | 446/11346 [12:31<5:02:30, 1.67s/it]
699
  4%|▍ | 447/11346 [12:32<5:03:08, 1.67s/it]
700
  4%|▍ | 448/11346 [12:34<5:03:54, 1.67s/it]
701
  4%|▍ | 449/11346 [12:36<5:04:07, 1.67s/it]
702
  4%|▍ | 450/11346 [12:37<5:04:10, 1.67s/it]
703
  4%|▍ | 451/11346 [12:39<5:03:38, 1.67s/it]
704
  4%|▍ | 452/11346 [12:41<5:03:29, 1.67s/it]
705
  4%|▍ | 453/11346 [12:42<5:03:48, 1.67s/it]
706
  4%|▍ | 454/11346 [12:44<5:03:09, 1.67s/it]
707
  4%|▍ | 455/11346 [12:46<5:02:57, 1.67s/it]
708
  4%|▍ | 456/11346 [12:47<5:02:57, 1.67s/it]
709
  4%|▍ | 457/11346 [12:49<5:04:03, 1.68s/it]
710
  4%|▍ | 458/11346 [12:51<5:03:59, 1.68s/it]
711
  4%|▍ | 459/11346 [12:53<5:21:15, 1.77s/it]
712
  4%|▍ | 460/11346 [12:55<5:17:49, 1.75s/it]
713
  4%|▍ | 461/11346 [12:56<5:13:41, 1.73s/it]
714
  4%|▍ | 462/11346 [12:58<5:13:35, 1.73s/it]
715
  4%|▍ | 463/11346 [13:00<5:10:36, 1.71s/it]
716
  4%|▍ | 464/11346 [13:01<5:08:09, 1.70s/it]
717
  4%|▍ | 465/11346 [13:03<5:06:18, 1.69s/it]
718
  4%|▍ | 466/11346 [13:05<5:04:55, 1.68s/it]
719
  4%|▍ | 467/11346 [13:06<5:04:22, 1.68s/it]
720
  4%|▍ | 468/11346 [13:08<5:04:22, 1.68s/it]
721
  4%|▍ | 469/11346 [13:10<5:04:45, 1.68s/it]
722
  4%|▍ | 470/11346 [13:11<5:04:50, 1.68s/it]
723
  4%|▍ | 471/11346 [13:13<5:04:24, 1.68s/it]
724
  4%|▍ | 472/11346 [13:15<5:04:33, 1.68s/it]
725
  4%|▍ | 473/11346 [13:16<5:04:15, 1.68s/it]
726
  4%|▍ | 474/11346 [13:18<5:03:50, 1.68s/it]
727
  4%|▍ | 475/11346 [13:20<5:02:43, 1.67s/it]
728
  4%|▍ | 476/11346 [13:21<5:03:09, 1.67s/it]
729
  4%|▍ | 477/11346 [13:23<5:02:54, 1.67s/it]
730
  4%|▍ | 478/11346 [13:25<5:02:49, 1.67s/it]
731
  4%|▍ | 479/11346 [13:26<5:02:38, 1.67s/it]
732
  4%|▍ | 480/11346 [13:28<5:02:39, 1.67s/it]
733
  4%|▍ | 481/11346 [13:30<5:02:47, 1.67s/it]
734
  4%|▍ | 482/11346 [13:31<5:01:53, 1.67s/it]
735
  4%|▍ | 483/11346 [13:33<5:02:10, 1.67s/it]
736
  4%|▍ | 484/11346 [13:35<5:02:28, 1.67s/it]
737
  4%|▍ | 485/11346 [13:36<5:02:10, 1.67s/it]
738
  4%|▍ | 486/11346 [13:38<5:02:15, 1.67s/it]
739
  4%|▍ | 487/11346 [13:40<5:02:22, 1.67s/it]
740
  4%|▍ | 488/11346 [13:41<5:02:32, 1.67s/it]
741
  4%|▍ | 489/11346 [13:43<5:03:04, 1.67s/it]
742
  4%|▍ | 490/11346 [13:45<5:02:53, 1.67s/it]
743
  4%|▍ | 491/11346 [13:46<5:02:19, 1.67s/it]
744
  4%|▍ | 492/11346 [13:48<5:02:10, 1.67s/it]
745
  4%|▍ | 493/11346 [13:50<5:01:41, 1.67s/it]
746
  4%|▍ | 494/11346 [13:51<5:02:02, 1.67s/it]
747
  4%|▍ | 495/11346 [13:53<5:01:21, 1.67s/it]
748
  4%|▍ | 496/11346 [13:55<5:01:26, 1.67s/it]
749
  4%|▍ | 497/11346 [13:56<5:01:15, 1.67s/it]
750
  4%|▍ | 498/11346 [13:58<5:01:42, 1.67s/it]
751
  4%|▍ | 499/11346 [14:00<5:01:44, 1.67s/it]
752
  4%|▍ | 500/11346 [14:01<5:02:14, 1.67s/it]
753
 
754
  4%|▍ | 500/11346 [14:01<5:02:14, 1.67s/it]
755
  4%|▍ | 501/11346 [14:03<5:02:32, 1.67s/it]
756
  4%|▍ | 502/11346 [14:05<5:02:02, 1.67s/it]
757
  4%|▍ | 503/11346 [14:06<5:01:34, 1.67s/it]
758
  4%|▍ | 504/11346 [14:08<5:02:24, 1.67s/it]
759
  4%|▍ | 505/11346 [14:10<5:02:05, 1.67s/it]
760
  4%|▍ | 506/11346 [14:11<5:02:21, 1.67s/it]
761
  4%|▍ | 507/11346 [14:13<5:01:52, 1.67s/it]
762
  4%|▍ | 508/11346 [14:15<5:01:57, 1.67s/it]
763
  4%|▍ | 509/11346 [14:16<5:02:53, 1.68s/it]
764
  4%|▍ | 510/11346 [14:18<5:02:34, 1.68s/it]
765
  5%|▍ | 511/11346 [14:20<5:02:36, 1.68s/it]
766
  5%|▍ | 512/11346 [14:22<5:02:55, 1.68s/it]
767
  5%|▍ | 513/11346 [14:23<5:03:14, 1.68s/it]
768
  5%|▍ | 514/11346 [14:25<5:02:12, 1.67s/it]
769
  5%|▍ | 515/11346 [14:27<5:02:19, 1.67s/it]
770
  5%|▍ | 516/11346 [14:28<5:01:39, 1.67s/it]
771
  5%|▍ | 517/11346 [14:30<5:01:15, 1.67s/it]
772
  5%|▍ | 518/11346 [14:32<5:01:18, 1.67s/it]
773
  5%|▍ | 519/11346 [14:33<5:00:55, 1.67s/it]
774
  5%|▍ | 520/11346 [14:35<5:02:20, 1.68s/it]
775
  5%|▍ | 521/11346 [14:37<5:03:12, 1.68s/it]
776
  5%|▍ | 522/11346 [14:38<5:03:18, 1.68s/it]
777
  5%|▍ | 523/11346 [14:40<5:03:23, 1.68s/it]
778
  5%|▍ | 524/11346 [14:42<5:03:28, 1.68s/it]
779
  5%|▍ | 525/11346 [14:43<5:03:05, 1.68s/it]
780
  5%|▍ | 526/11346 [14:45<5:03:17, 1.68s/it]
781
  5%|▍ | 527/11346 [14:47<5:03:29, 1.68s/it]
782
  5%|▍ | 528/11346 [14:48<5:03:48, 1.69s/it]
783
  5%|▍ | 529/11346 [14:50<5:03:55, 1.69s/it]
784
  5%|▍ | 530/11346 [14:52<5:04:50, 1.69s/it]
785
  5%|▍ | 531/11346 [14:53<5:04:48, 1.69s/it]
786
  5%|▍ | 532/11346 [14:55<5:04:26, 1.69s/it]
787
  5%|▍ | 533/11346 [14:57<5:04:27, 1.69s/it]
788
  5%|▍ | 534/11346 [14:59<5:04:52, 1.69s/it]
789
  5%|▍ | 535/11346 [15:00<5:04:59, 1.69s/it]
790
  5%|▍ | 536/11346 [15:02<5:04:05, 1.69s/it]
791
  5%|▍ | 537/11346 [15:04<5:03:08, 1.68s/it]
792
  5%|▍ | 538/11346 [15:05<5:02:24, 1.68s/it]
793
  5%|▍ | 539/11346 [15:07<5:01:50, 1.68s/it]
794
  5%|▍ | 540/11346 [15:09<5:01:27, 1.67s/it]
795
  5%|▍ | 541/11346 [15:10<5:01:09, 1.67s/it]
796
  5%|▍ | 542/11346 [15:12<5:00:10, 1.67s/it]
797
  5%|▍ | 543/11346 [15:14<5:00:16, 1.67s/it]
798
  5%|▍ | 544/11346 [15:15<5:00:51, 1.67s/it]
799
  5%|▍ | 545/11346 [15:17<5:01:04, 1.67s/it]
800
  5%|▍ | 546/11346 [15:19<5:01:08, 1.67s/it]
801
  5%|▍ | 547/11346 [15:20<5:00:45, 1.67s/it]
802
  5%|▍ | 548/11346 [15:22<5:01:03, 1.67s/it]
803
  5%|▍ | 549/11346 [15:24<5:00:43, 1.67s/it]
804
  5%|▍ | 550/11346 [15:25<5:00:52, 1.67s/it]
805
  5%|▍ | 551/11346 [15:27<5:00:40, 1.67s/it]
806
  5%|▍ | 552/11346 [15:29<5:00:01, 1.67s/it]
807
  5%|▍ | 553/11346 [15:30<4:59:21, 1.66s/it]
808
  5%|▍ | 554/11346 [15:32<4:59:19, 1.66s/it]
809
  5%|▍ | 555/11346 [15:34<4:59:11, 1.66s/it]
810
  5%|▍ | 556/11346 [15:35<4:59:44, 1.67s/it]
811
  5%|▍ | 557/11346 [15:37<4:59:52, 1.67s/it]
812
  5%|▍ | 558/11346 [15:39<4:59:58, 1.67s/it]
813
  5%|▍ | 559/11346 [15:40<4:59:58, 1.67s/it]
814
  5%|▍ | 560/11346 [15:42<4:59:56, 1.67s/it]
815
  5%|▍ | 561/11346 [15:44<4:59:27, 1.67s/it]
816
  5%|▍ | 562/11346 [15:45<4:59:50, 1.67s/it]
817
  5%|▍ | 563/11346 [15:47<4:59:42, 1.67s/it]
818
  5%|▍ | 564/11346 [15:49<4:59:51, 1.67s/it]
819
  5%|▍ | 565/11346 [15:50<4:59:37, 1.67s/it]
820
  5%|▍ | 566/11346 [15:52<4:59:35, 1.67s/it]
821
  5%|▍ | 567/11346 [15:54<4:59:40, 1.67s/it]
822
  5%|▌ | 568/11346 [15:55<4:59:11, 1.67s/it]
823
  5%|▌ | 569/11346 [15:57<4:58:53, 1.66s/it]
824
  5%|▌ | 570/11346 [15:59<4:58:52, 1.66s/it]
825
  5%|▌ | 571/11346 [16:00<4:58:37, 1.66s/it]
826
  5%|▌ | 572/11346 [16:02<4:58:21, 1.66s/it]
827
  5%|▌ | 573/11346 [16:04<4:58:34, 1.66s/it]
828
  5%|▌ | 574/11346 [16:05<4:58:30, 1.66s/it]
829
  5%|▌ | 575/11346 [16:07<4:58:31, 1.66s/it]
830
  5%|▌ | 576/11346 [16:09<4:58:09, 1.66s/it]
831
  5%|▌ | 577/11346 [16:10<4:58:28, 1.66s/it]
832
  5%|▌ | 578/11346 [16:12<4:59:12, 1.67s/it]
833
  5%|▌ | 579/11346 [16:14<4:58:45, 1.66s/it]
834
  5%|▌ | 580/11346 [16:15<4:58:44, 1.66s/it]
835
  5%|▌ | 581/11346 [16:17<4:58:33, 1.66s/it]
836
  5%|▌ | 582/11346 [16:19<4:58:39, 1.66s/it]
837
  5%|▌ | 583/11346 [16:20<4:58:37, 1.66s/it]
838
  5%|▌ | 584/11346 [16:22<4:59:01, 1.67s/it]
839
  5%|▌ | 585/11346 [16:24<4:59:00, 1.67s/it]
840
  5%|▌ | 586/11346 [16:25<4:58:48, 1.67s/it]
841
  5%|▌ | 587/11346 [16:27<4:59:31, 1.67s/it]
842
  5%|▌ | 588/11346 [16:29<4:59:17, 1.67s/it]
843
  5%|▌ | 589/11346 [16:30<4:59:01, 1.67s/it]
844
  5%|▌ | 590/11346 [16:32<4:59:00, 1.67s/it]
845
  5%|▌ | 591/11346 [16:34<4:58:32, 1.67s/it]
846
  5%|▌ | 592/11346 [16:35<4:58:14, 1.66s/it]
847
  5%|▌ | 593/11346 [16:37<4:58:02, 1.66s/it]
848
  5%|▌ | 594/11346 [16:39<4:58:02, 1.66s/it]
849
  5%|▌ | 595/11346 [16:40<4:58:33, 1.67s/it]
850
  5%|▌ | 596/11346 [16:42<4:58:51, 1.67s/it]
851
  5%|▌ | 597/11346 [16:44<4:59:06, 1.67s/it]
852
  5%|▌ | 598/11346 [16:45<4:59:38, 1.67s/it]
853
  5%|▌ | 599/11346 [16:47<4:59:16, 1.67s/it]
854
  5%|▌ | 600/11346 [16:49<4:58:32, 1.67s/it]
855
  5%|▌ | 601/11346 [16:50<4:58:21, 1.67s/it]
856
  5%|▌ | 602/11346 [16:52<4:58:30, 1.67s/it]
857
  5%|▌ | 603/11346 [16:54<4:58:01, 1.66s/it]
858
  5%|▌ | 604/11346 [16:55<4:57:49, 1.66s/it]
859
  5%|▌ | 605/11346 [16:57<4:58:10, 1.67s/it]
860
  5%|▌ | 606/11346 [16:59<4:57:58, 1.66s/it]
861
  5%|▌ | 607/11346 [17:00<4:57:37, 1.66s/it]
862
  5%|▌ | 608/11346 [17:02<4:58:11, 1.67s/it]
863
  5%|▌ | 609/11346 [17:04<4:57:44, 1.66s/it]
864
  5%|▌ | 610/11346 [17:05<4:58:14, 1.67s/it]
865
  5%|▌ | 611/11346 [17:07<4:58:20, 1.67s/it]
866
  5%|▌ | 612/11346 [17:09<4:58:21, 1.67s/it]
867
  5%|▌ | 613/11346 [17:10<4:57:54, 1.67s/it]
868
  5%|▌ | 614/11346 [17:12<4:57:44, 1.66s/it]
869
  5%|▌ | 615/11346 [17:14<4:57:21, 1.66s/it]
870
  5%|▌ | 616/11346 [17:15<4:57:10, 1.66s/it]
871
  5%|▌ | 617/11346 [17:17<4:57:06, 1.66s/it]
872
  5%|▌ | 618/11346 [17:19<4:57:04, 1.66s/it]
873
  5%|▌ | 619/11346 [17:20<4:56:53, 1.66s/it]
874
  5%|▌ | 620/11346 [17:22<4:56:52, 1.66s/it]
875
  5%|▌ | 621/11346 [17:24<4:57:12, 1.66s/it]
876
  5%|▌ | 622/11346 [17:25<4:57:38, 1.67s/it]
877
  5%|▌ | 623/11346 [17:27<4:57:06, 1.66s/it]
878
  5%|▌ | 624/11346 [17:29<4:57:06, 1.66s/it]
879
  6%|▌ | 625/11346 [17:30<4:57:03, 1.66s/it]
880
  6%|▌ | 626/11346 [17:32<4:57:12, 1.66s/it]
881
  6%|▌ | 627/11346 [17:34<4:57:32, 1.67s/it]
882
  6%|▌ | 628/11346 [17:35<4:57:31, 1.67s/it]
883
  6%|▌ | 629/11346 [17:37<4:57:00, 1.66s/it]
884
  6%|▌ | 630/11346 [17:39<4:57:02, 1.66s/it]
885
  6%|▌ | 631/11346 [17:40<4:57:57, 1.67s/it]
886
  6%|▌ | 632/11346 [17:42<4:59:03, 1.67s/it]
887
  6%|▌ | 633/11346 [17:44<4:59:56, 1.68s/it]
888
  6%|▌ | 634/11346 [17:45<5:00:30, 1.68s/it]
889
  6%|▌ | 635/11346 [17:47<5:01:20, 1.69s/it]
890
  6%|▌ | 636/11346 [17:49<5:01:53, 1.69s/it]
891
  6%|▌ | 637/11346 [17:50<5:02:01, 1.69s/it]
892
  6%|▌ | 638/11346 [17:52<5:01:55, 1.69s/it]
893
  6%|▌ | 639/11346 [17:54<5:02:05, 1.69s/it]
894
  6%|▌ | 640/11346 [17:55<5:01:57, 1.69s/it]
895
  6%|▌ | 641/11346 [17:57<5:02:03, 1.69s/it]
896
  6%|▌ | 642/11346 [17:59<5:01:59, 1.69s/it]
897
  6%|▌ | 643/11346 [18:01<5:01:45, 1.69s/it]
898
  6%|▌ | 644/11346 [18:02<5:01:34, 1.69s/it]
899
  6%|▌ | 645/11346 [18:04<5:01:09, 1.69s/it]
900
  6%|▌ | 646/11346 [18:06<5:01:04, 1.69s/it]
901
  6%|▌ | 647/11346 [18:07<5:00:31, 1.69s/it]
902
  6%|▌ | 648/11346 [18:09<4:59:12, 1.68s/it]
903
  6%|▌ | 649/11346 [18:11<4:58:50, 1.68s/it]
904
  6%|▌ | 650/11346 [18:12<4:57:53, 1.67s/it]
905
  6%|▌ | 651/11346 [18:14<4:57:24, 1.67s/it]
906
  6%|▌ | 652/11346 [18:16<4:57:12, 1.67s/it]
907
  6%|▌ | 653/11346 [18:17<4:56:21, 1.66s/it]
908
  6%|▌ | 654/11346 [18:19<4:57:55, 1.67s/it]
909
  6%|▌ | 655/11346 [18:21<4:58:01, 1.67s/it]
910
  6%|▌ | 656/11346 [18:22<4:58:46, 1.68s/it]
911
  6%|▌ | 657/11346 [18:24<4:59:30, 1.68s/it]
912
  6%|▌ | 658/11346 [18:26<5:00:04, 1.68s/it]
913
  6%|▌ | 659/11346 [18:27<5:00:31, 1.69s/it]
914
  6%|▌ | 660/11346 [18:29<5:00:33, 1.69s/it]
915
  6%|▌ | 661/11346 [18:31<5:00:11, 1.69s/it]
916
  6%|▌ | 662/11346 [18:32<5:00:16, 1.69s/it]
917
  6%|▌ | 663/11346 [18:34<5:00:07, 1.69s/it]
918
  6%|▌ | 664/11346 [18:36<4:59:52, 1.68s/it]
919
  6%|▌ | 665/11346 [18:37<4:59:42, 1.68s/it]
920
  6%|▌ | 666/11346 [18:39<5:00:08, 1.69s/it]
921
  6%|▌ | 667/11346 [18:41<4:59:57, 1.69s/it]
922
  6%|▌ | 668/11346 [18:43<5:00:15, 1.69s/it]
923
  6%|▌ | 669/11346 [18:44<5:00:14, 1.69s/it]
924
  6%|▌ | 670/11346 [18:46<5:00:31, 1.69s/it]
925
  6%|▌ | 671/11346 [18:48<5:00:12, 1.69s/it]
926
  6%|▌ | 672/11346 [18:49<4:59:53, 1.69s/it]
927
  6%|▌ | 673/11346 [18:51<5:00:01, 1.69s/it]
928
  6%|▌ | 674/11346 [18:53<5:00:30, 1.69s/it]
929
  6%|▌ | 675/11346 [18:54<5:00:06, 1.69s/it]
930
  6%|▌ | 676/11346 [18:56<4:59:33, 1.68s/it]
931
  6%|▌ | 677/11346 [18:58<4:59:41, 1.69s/it]
932
  6%|▌ | 678/11346 [18:59<4:59:27, 1.68s/it]
933
  6%|▌ | 679/11346 [19:01<4:59:22, 1.68s/it]
934
  6%|▌ | 680/11346 [19:03<4:58:49, 1.68s/it]
935
  6%|▌ | 681/11346 [19:04<4:58:44, 1.68s/it]
936
  6%|▌ | 682/11346 [19:06<4:59:19, 1.68s/it]
937
  6%|▌ | 683/11346 [19:08<5:00:28, 1.69s/it]
938
  6%|▌ | 684/11346 [19:10<5:00:22, 1.69s/it]
939
  6%|▌ | 685/11346 [19:11<5:00:50, 1.69s/it]
940
  6%|▌ | 686/11346 [19:13<5:00:45, 1.69s/it]
941
  6%|▌ | 687/11346 [19:15<5:00:53, 1.69s/it]
942
  6%|▌ | 688/11346 [19:16<5:00:21, 1.69s/it]
943
  6%|▌ | 689/11346 [19:18<4:59:46, 1.69s/it]
944
  6%|▌ | 690/11346 [19:20<4:59:40, 1.69s/it]
945
  6%|▌ | 691/11346 [19:21<4:59:23, 1.69s/it]
946
  6%|▌ | 692/11346 [19:23<4:59:26, 1.69s/it]
947
  6%|▌ | 693/11346 [19:25<4:59:19, 1.69s/it]
948
  6%|▌ | 694/11346 [19:26<4:58:49, 1.68s/it]
949
  6%|▌ | 695/11346 [19:28<4:58:41, 1.68s/it]
950
  6%|▌ | 696/11346 [19:30<4:58:39, 1.68s/it]
951
  6%|▌ | 697/11346 [19:31<4:58:06, 1.68s/it]
952
  6%|▌ | 698/11346 [19:33<4:58:06, 1.68s/it]
953
  6%|▌ | 699/11346 [19:35<4:57:56, 1.68s/it]
954
  6%|▌ | 700/11346 [19:36<4:58:00, 1.68s/it]
955
  6%|▌ | 701/11346 [19:38<4:58:51, 1.68s/it]
956
  6%|▌ | 702/11346 [19:40<4:59:12, 1.69s/it]
957
  6%|▌ | 703/11346 [19:42<4:59:37, 1.69s/it]
958
  6%|▌ | 704/11346 [19:43<5:00:02, 1.69s/it]
959
  6%|▌ | 705/11346 [19:45<4:59:14, 1.69s/it]
960
  6%|▌ | 706/11346 [19:47<4:58:56, 1.69s/it]
961
  6%|▌ | 707/11346 [19:48<4:58:31, 1.68s/it]
962
  6%|▌ | 708/11346 [19:50<4:57:54, 1.68s/it]
963
  6%|▌ | 709/11346 [19:52<4:58:07, 1.68s/it]
964
  6%|▋ | 710/11346 [19:53<4:57:46, 1.68s/it]
965
  6%|▋ | 711/11346 [19:55<4:57:57, 1.68s/it]
966
  6%|▋ | 712/11346 [19:57<4:58:10, 1.68s/it]
967
  6%|▋ | 713/11346 [19:58<4:57:58, 1.68s/it]
968
  6%|▋ | 714/11346 [20:00<4:57:53, 1.68s/it]
969
  6%|▋ | 715/11346 [20:02<4:57:37, 1.68s/it]
970
  6%|▋ | 716/11346 [20:03<4:57:45, 1.68s/it]
971
  6%|▋ | 717/11346 [20:05<4:57:19, 1.68s/it]
972
  6%|▋ | 718/11346 [20:07<4:57:44, 1.68s/it]
973
  6%|▋ | 719/11346 [20:08<4:56:51, 1.68s/it]
974
  6%|▋ | 720/11346 [20:10<4:56:15, 1.67s/it]
975
  6%|▋ | 721/11346 [20:12<4:55:17, 1.67s/it]
976
  6%|▋ | 722/11346 [20:13<4:54:35, 1.66s/it]
977
  6%|▋ | 723/11346 [20:15<4:54:33, 1.66s/it]
978
  6%|▋ | 724/11346 [20:17<4:54:14, 1.66s/it]
979
  6%|▋ | 725/11346 [20:18<4:54:05, 1.66s/it]
980
  6%|▋ | 726/11346 [20:20<4:55:30, 1.67s/it]
981
  6%|▋ | 727/11346 [20:22<4:56:16, 1.67s/it]
982
  6%|▋ | 728/11346 [20:23<4:56:08, 1.67s/it]
983
  6%|▋ | 729/11346 [20:25<4:56:47, 1.68s/it]
984
  6%|▋ | 730/11346 [20:27<4:57:13, 1.68s/it]
985
  6%|▋ | 731/11346 [20:28<4:56:30, 1.68s/it]
986
  6%|▋ | 732/11346 [20:30<4:56:32, 1.68s/it]
987
  6%|▋ | 733/11346 [20:32<4:55:43, 1.67s/it]
988
  6%|▋ | 734/11346 [20:33<4:55:09, 1.67s/it]
989
  6%|▋ | 735/11346 [20:35<4:54:32, 1.67s/it]
990
  6%|▋ | 736/11346 [20:37<4:54:17, 1.66s/it]
991
  6%|▋ | 737/11346 [20:38<4:53:46, 1.66s/it]
992
  7%|▋ | 738/11346 [20:40<4:53:33, 1.66s/it]
993
  7%|▋ | 739/11346 [20:42<4:54:24, 1.67s/it]
994
  7%|▋ | 740/11346 [20:43<4:54:11, 1.66s/it]
995
  7%|▋ | 741/11346 [20:45<4:54:15, 1.66s/it]
996
  7%|▋ | 742/11346 [20:47<4:53:57, 1.66s/it]
997
  7%|▋ | 743/11346 [20:48<4:53:34, 1.66s/it]
998
  7%|▋ | 744/11346 [20:50<4:53:25, 1.66s/it]
999
  7%|▋ | 745/11346 [20:52<4:53:35, 1.66s/it]
1000
  7%|▋ | 746/11346 [20:53<4:53:32, 1.66s/it]
1001
  7%|▋ | 747/11346 [20:55<4:53:38, 1.66s/it]
1002
  7%|▋ | 748/11346 [20:57<4:53:14, 1.66s/it]
1003
  7%|▋ | 749/11346 [20:58<4:53:01, 1.66s/it]
1004
  7%|▋ | 750/11346 [21:00<4:53:11, 1.66s/it]
1005
  7%|▋ | 751/11346 [21:02<4:53:15, 1.66s/it]
1006
  7%|▋ | 752/11346 [21:03<4:52:58, 1.66s/it]
1007
  7%|▋ | 753/11346 [21:05<4:54:12, 1.67s/it]
1008
  7%|▋ | 754/11346 [21:07<4:55:08, 1.67s/it]
1009
  7%|▋ | 755/11346 [21:08<4:54:37, 1.67s/it]
1010
  7%|▋ | 756/11346 [21:10<4:54:09, 1.67s/it]
1011
  7%|▋ | 757/11346 [21:12<4:53:54, 1.67s/it]
1012
  7%|▋ | 758/11346 [21:13<4:53:53, 1.67s/it]
1013
  7%|▋ | 759/11346 [21:15<4:53:47, 1.66s/it]
1014
  7%|▋ | 760/11346 [21:17<4:53:31, 1.66s/it]
1015
  7%|▋ | 761/11346 [21:18<4:53:03, 1.66s/it]
1016
  7%|▋ | 762/11346 [21:20<4:53:05, 1.66s/it]
1017
  7%|▋ | 763/11346 [21:22<4:54:17, 1.67s/it]
1018
  7%|▋ | 764/11346 [21:23<4:54:43, 1.67s/it]
1019
  7%|▋ | 765/11346 [21:25<4:55:05, 1.67s/it]
1020
  7%|▋ | 766/11346 [21:27<4:55:33, 1.68s/it]
1021
  7%|▋ | 767/11346 [21:28<4:55:35, 1.68s/it]
1022
  7%|▋ | 768/11346 [21:30<4:55:51, 1.68s/it]
1023
  7%|▋ | 769/11346 [21:32<4:56:18, 1.68s/it]
1024
  7%|▋ | 770/11346 [21:33<4:55:49, 1.68s/it]
1025
  7%|▋ | 771/11346 [21:35<4:55:55, 1.68s/it]
1026
  7%|▋ | 772/11346 [21:37<4:55:46, 1.68s/it]
1027
  7%|▋ | 773/11346 [21:38<4:55:42, 1.68s/it]
1028
  7%|▋ | 774/11346 [21:40<4:55:06, 1.67s/it]
1029
  7%|▋ | 775/11346 [21:42<4:54:05, 1.67s/it]
1030
  7%|▋ | 776/11346 [21:43<4:53:21, 1.67s/it]
1031
  7%|▋ | 777/11346 [21:45<4:54:19, 1.67s/it]
1032
  7%|▋ | 778/11346 [21:47<4:54:38, 1.67s/it]
1033
  7%|▋ | 779/11346 [21:48<4:54:30, 1.67s/it]
1034
  7%|▋ | 780/11346 [21:50<4:55:19, 1.68s/it]
1035
  7%|▋ | 781/11346 [21:52<4:55:11, 1.68s/it]
1036
  7%|▋ | 782/11346 [21:54<4:54:34, 1.67s/it]
1037
  7%|▋ | 783/11346 [21:55<4:54:44, 1.67s/it]
1038
  7%|▋ | 784/11346 [21:57<4:54:42, 1.67s/it]
1039
  7%|▋ | 785/11346 [21:59<4:54:49, 1.68s/it]
1040
  7%|▋ | 786/11346 [22:00<4:55:14, 1.68s/it]
1041
  7%|▋ | 787/11346 [22:02<4:55:26, 1.68s/it]
1042
  7%|▋ | 788/11346 [22:04<4:55:16, 1.68s/it]
1043
  7%|▋ | 789/11346 [22:05<4:54:52, 1.68s/it]
1044
  7%|▋ | 790/11346 [22:07<4:54:51, 1.68s/it]
1045
  7%|▋ | 791/11346 [22:09<4:55:31, 1.68s/it]
1046
  7%|▋ | 792/11346 [22:10<4:55:13, 1.68s/it]
1047
  7%|▋ | 793/11346 [22:12<4:54:55, 1.68s/it]
1048
  7%|▋ | 794/11346 [22:14<4:54:53, 1.68s/it]
1049
  7%|▋ | 795/11346 [22:15<4:54:41, 1.68s/it]
1050
  7%|▋ | 796/11346 [22:17<4:54:32, 1.68s/it]
1051
  7%|▋ | 797/11346 [22:19<4:54:57, 1.68s/it]
1052
  7%|▋ | 798/11346 [22:20<4:55:02, 1.68s/it]
1053
  7%|▋ | 799/11346 [22:22<4:55:15, 1.68s/it]
1054
  7%|▋ | 800/11346 [22:24<4:55:11, 1.68s/it]
1055
  7%|▋ | 801/11346 [22:25<4:54:19, 1.67s/it]
1056
  7%|▋ | 802/11346 [22:27<4:53:24, 1.67s/it]
1057
  7%|▋ | 803/11346 [22:29<4:52:46, 1.67s/it]
1058
  7%|▋ | 804/11346 [22:30<4:52:32, 1.67s/it]
1059
  7%|▋ | 805/11346 [22:32<4:52:00, 1.66s/it]
1060
  7%|▋ | 806/11346 [22:34<4:52:02, 1.66s/it]
1061
  7%|▋ | 807/11346 [22:35<4:53:44, 1.67s/it]
1062
  7%|▋ | 808/11346 [22:37<4:54:03, 1.67s/it]
1063
  7%|▋ | 809/11346 [22:39<4:54:23, 1.68s/it]
1064
  7%|▋ | 810/11346 [22:40<4:53:49, 1.67s/it]
1065
  7%|▋ | 811/11346 [22:42<4:53:01, 1.67s/it]
1066
  7%|▋ | 812/11346 [22:44<4:52:27, 1.67s/it]
1067
  7%|▋ | 813/11346 [22:45<4:52:18, 1.67s/it]
1068
  7%|▋ | 814/11346 [22:47<4:52:02, 1.66s/it]
1069
  7%|▋ | 815/11346 [22:49<4:51:27, 1.66s/it]
1070
  7%|▋ | 816/11346 [22:50<4:51:19, 1.66s/it]
1071
  7%|▋ | 817/11346 [22:52<4:51:09, 1.66s/it]
1072
  7%|▋ | 818/11346 [22:54<4:51:02, 1.66s/it]
1073
  7%|▋ | 819/11346 [22:55<4:51:01, 1.66s/it]
1074
  7%|▋ | 820/11346 [22:57<4:51:02, 1.66s/it]
1075
  7%|▋ | 821/11346 [22:59<5:08:01, 1.76s/it]
1076
  7%|▋ | 822/11346 [23:01<5:02:52, 1.73s/it]
1077
  7%|▋ | 823/11346 [23:02<4:59:30, 1.71s/it]
1078
  7%|▋ | 824/11346 [23:04<4:56:55, 1.69s/it]
1079
  7%|▋ | 825/11346 [23:06<4:55:07, 1.68s/it]
1080
  7%|▋ | 826/11346 [23:07<4:53:39, 1.67s/it]
1081
  7%|▋ | 827/11346 [23:09<4:52:41, 1.67s/it]
1082
  7%|▋ | 828/11346 [23:11<4:51:52, 1.66s/it]
1083
  7%|▋ | 829/11346 [23:12<4:51:17, 1.66s/it]
1084
  7%|▋ | 830/11346 [23:14<4:52:05, 1.67s/it]
1085
  7%|▋ | 831/11346 [23:16<4:52:35, 1.67s/it]
1086
  7%|▋ | 832/11346 [23:17<4:52:52, 1.67s/it]
1087
  7%|▋ | 833/11346 [23:19<4:52:25, 1.67s/it]
1088
  7%|▋ | 834/11346 [23:21<4:52:15, 1.67s/it]
1089
  7%|▋ | 835/11346 [23:22<4:51:22, 1.66s/it]
1090
  7%|▋ | 836/11346 [23:24<4:50:47, 1.66s/it]
1091
  7%|▋ | 837/11346 [23:26<4:50:29, 1.66s/it]
1092
  7%|▋ | 838/11346 [23:27<4:50:16, 1.66s/it]
1093
  7%|▋ | 839/11346 [23:29<4:49:57, 1.66s/it]
1094
  7%|▋ | 840/11346 [23:31<4:50:23, 1.66s/it]
1095
  7%|▋ | 841/11346 [23:32<4:50:18, 1.66s/it]
1096
  7%|▋ | 842/11346 [23:34<4:50:20, 1.66s/it]
1097
  7%|▋ | 843/11346 [23:35<4:49:52, 1.66s/it]
1098
  7%|▋ | 844/11346 [23:37<4:49:43, 1.66s/it]
1099
  7%|▋ | 845/11346 [23:39<4:49:51, 1.66s/it]
1100
  7%|▋ | 846/11346 [23:40<4:49:52, 1.66s/it]
1101
  7%|▋ | 847/11346 [23:42<4:49:52, 1.66s/it]
1102
  7%|▋ | 848/11346 [23:44<4:50:00, 1.66s/it]
1103
  7%|▋ | 849/11346 [23:45<4:50:11, 1.66s/it]
1104
  7%|▋ | 850/11346 [23:47<4:50:22, 1.66s/it]
1105
  8%|▊ | 851/11346 [23:49<4:49:56, 1.66s/it]
1106
  8%|▊ | 852/11346 [23:50<4:49:53, 1.66s/it]
1107
  8%|▊ | 853/11346 [23:52<4:50:04, 1.66s/it]
1108
  8%|▊ | 854/11346 [23:54<4:50:03, 1.66s/it]
1109
  8%|▊ | 855/11346 [23:55<4:49:53, 1.66s/it]
1110
  8%|▊ | 856/11346 [23:57<4:49:48, 1.66s/it]
1111
  8%|▊ | 857/11346 [23:59<4:49:27, 1.66s/it]
1112
  8%|▊ | 858/11346 [24:00<4:49:06, 1.65s/it]
1113
  8%|▊ | 859/11346 [24:02<4:49:20, 1.66s/it]
1114
  8%|▊ | 860/11346 [24:04<4:49:13, 1.65s/it]
1115
  8%|▊ | 861/11346 [24:05<4:49:15, 1.66s/it]
1116
  8%|▊ | 862/11346 [24:07<4:49:24, 1.66s/it]
1117
  8%|▊ | 863/11346 [24:09<4:49:17, 1.66s/it]
1118
  8%|▊ | 864/11346 [24:10<4:49:44, 1.66s/it]
1119
  8%|▊ | 865/11346 [24:12<4:49:21, 1.66s/it]
1120
  8%|▊ | 866/11346 [24:14<4:49:42, 1.66s/it]
1121
  8%|▊ | 867/11346 [24:15<4:52:05, 1.67s/it]
1122
  8%|▊ | 868/11346 [24:17<4:51:23, 1.67s/it]
1123
  8%|▊ | 869/11346 [24:19<4:50:54, 1.67s/it]
1124
  8%|▊ | 870/11346 [24:20<4:50:04, 1.66s/it]
1125
  8%|▊ | 871/11346 [24:22<4:49:53, 1.66s/it]
1126
  8%|▊ | 872/11346 [24:24<4:49:23, 1.66s/it]
1127
  8%|▊ | 873/11346 [24:25<4:49:25, 1.66s/it]
1128
  8%|▊ | 874/11346 [24:27<4:49:14, 1.66s/it]
1129
  8%|▊ | 875/11346 [24:29<4:50:23, 1.66s/it]
1130
  8%|▊ | 876/11346 [24:30<4:51:25, 1.67s/it]
1131
  8%|▊ | 877/11346 [24:32<4:52:09, 1.67s/it]
1132
  8%|▊ | 878/11346 [24:34<4:52:06, 1.67s/it]
1133
  8%|▊ | 879/11346 [24:35<4:52:55, 1.68s/it]
1134
  8%|▊ | 880/11346 [24:37<4:52:37, 1.68s/it]
1135
  8%|▊ | 881/11346 [24:39<4:52:20, 1.68s/it]
1136
  8%|▊ | 882/11346 [24:40<4:52:30, 1.68s/it]
1137
  8%|▊ | 883/11346 [24:42<4:52:46, 1.68s/it]
1138
  8%|▊ | 884/11346 [24:44<4:52:39, 1.68s/it]
1139
  8%|▊ | 885/11346 [24:45<4:52:46, 1.68s/it]
1140
  8%|▊ | 886/11346 [24:47<4:52:38, 1.68s/it]
1141
  8%|▊ | 887/11346 [24:49<4:52:23, 1.68s/it]
1142
  8%|▊ | 888/11346 [24:50<4:52:35, 1.68s/it]
1143
  8%|▊ | 889/11346 [24:52<4:53:13, 1.68s/it]
1144
  8%|▊ | 890/11346 [24:54<4:53:15, 1.68s/it]
1145
  8%|▊ | 891/11346 [24:55<4:53:01, 1.68s/it]
1146
  8%|▊ | 892/11346 [24:57<4:52:58, 1.68s/it]
1147
  8%|▊ | 893/11346 [24:59<4:52:40, 1.68s/it]
1148
  8%|▊ | 894/11346 [25:01<4:52:50, 1.68s/it]
1149
  8%|▊ | 895/11346 [25:02<4:52:28, 1.68s/it]
1150
  8%|▊ | 896/11346 [25:04<4:52:07, 1.68s/it]
1151
  8%|▊ | 897/11346 [25:06<4:52:10, 1.68s/it]
1152
  8%|▊ | 898/11346 [25:07<4:51:51, 1.68s/it]
1153
  8%|▊ | 899/11346 [25:09<4:51:58, 1.68s/it]
1154
  8%|▊ | 900/11346 [25:11<4:51:59, 1.68s/it]
1155
  8%|▊ | 901/11346 [25:12<4:51:45, 1.68s/it]
1156
  8%|▊ | 902/11346 [25:14<4:51:35, 1.68s/it]
1157
  8%|▊ | 903/11346 [25:16<4:51:44, 1.68s/it]
1158
  8%|▊ | 904/11346 [25:17<4:51:24, 1.67s/it]
1159
  8%|▊ | 905/11346 [25:19<4:51:19, 1.67s/it]
1160
  8%|▊ | 906/11346 [25:21<4:51:39, 1.68s/it]
1161
  8%|▊ | 907/11346 [25:22<4:51:33, 1.68s/it]
1162
  8%|▊ | 908/11346 [25:24<4:51:36, 1.68s/it]
1163
  8%|▊ | 909/11346 [25:26<4:51:44, 1.68s/it]
1164
  8%|▊ | 910/11346 [25:27<4:51:53, 1.68s/it]
1165
  8%|▊ | 911/11346 [25:29<4:51:47, 1.68s/it]
1166
  8%|▊ | 912/11346 [25:31<4:51:38, 1.68s/it]
1167
  8%|▊ | 913/11346 [25:32<4:51:39, 1.68s/it]
1168
  8%|▊ | 914/11346 [25:34<4:51:36, 1.68s/it]
1169
  8%|▊ | 915/11346 [25:36<4:51:14, 1.68s/it]
1170
  8%|▊ | 916/11346 [25:37<4:51:21, 1.68s/it]
1171
  8%|▊ | 917/11346 [25:39<4:51:13, 1.68s/it]
1172
  8%|▊ | 918/11346 [25:41<4:51:13, 1.68s/it]
1173
  8%|▊ | 919/11346 [25:42<4:51:11, 1.68s/it]
1174
  8%|▊ | 920/11346 [25:44<4:50:58, 1.67s/it]
1175
  8%|▊ | 921/11346 [25:46<4:50:41, 1.67s/it]
1176
  8%|▊ | 922/11346 [25:47<4:50:43, 1.67s/it]
1177
  8%|▊ | 923/11346 [25:49<4:50:50, 1.67s/it]
1178
  8%|▊ | 924/11346 [25:51<4:50:00, 1.67s/it]
1179
  8%|▊ | 925/11346 [25:52<4:49:06, 1.66s/it]
1180
  8%|▊ | 926/11346 [25:54<4:48:28, 1.66s/it]
1181
  8%|▊ | 927/11346 [25:56<4:49:21, 1.67s/it]
1182
  8%|▊ | 928/11346 [25:57<4:49:41, 1.67s/it]
1183
  8%|▊ | 929/11346 [25:59<4:49:47, 1.67s/it]
1184
  8%|▊ | 930/11346 [26:01<4:50:23, 1.67s/it]
1185
  8%|▊ | 931/11346 [26:02<4:50:44, 1.67s/it]
1186
  8%|▊ | 932/11346 [26:04<4:50:59, 1.68s/it]
1187
  8%|▊ | 933/11346 [26:06<4:51:13, 1.68s/it]
1188
  8%|▊ | 934/11346 [26:08<4:51:35, 1.68s/it]
1189
  8%|▊ | 935/11346 [26:09<4:51:26, 1.68s/it]
1190
  8%|▊ | 936/11346 [26:11<4:51:53, 1.68s/it]
1191
  8%|▊ | 937/11346 [26:13<4:51:13, 1.68s/it]
1192
  8%|▊ | 938/11346 [26:14<4:51:23, 1.68s/it]
1193
  8%|▊ | 939/11346 [26:16<4:50:59, 1.68s/it]
1194
  8%|▊ | 940/11346 [26:18<4:51:04, 1.68s/it]
1195
  8%|▊ | 941/11346 [26:19<4:50:42, 1.68s/it]
1196
  8%|▊ | 942/11346 [26:21<4:50:25, 1.67s/it]
1197
  8%|▊ | 943/11346 [26:23<4:50:25, 1.68s/it]
1198
  8%|▊ | 944/11346 [26:24<4:50:40, 1.68s/it]
1199
  8%|▊ | 945/11346 [26:26<4:50:35, 1.68s/it]
1200
  8%|▊ | 946/11346 [26:28<4:50:44, 1.68s/it]
1201
  8%|▊ | 947/11346 [26:29<4:50:50, 1.68s/it]
1202
  8%|▊ | 948/11346 [26:31<4:50:59, 1.68s/it]
1203
  8%|▊ | 949/11346 [26:33<4:50:40, 1.68s/it]
1204
  8%|▊ | 950/11346 [26:34<4:50:36, 1.68s/it]
1205
  8%|▊ | 951/11346 [26:36<4:50:42, 1.68s/it]
1206
  8%|▊ | 952/11346 [26:38<4:50:17, 1.68s/it]
1207
  8%|▊ | 953/11346 [26:39<4:50:12, 1.68s/it]
1208
  8%|▊ | 954/11346 [26:41<4:50:11, 1.68s/it]
1209
  8%|▊ | 955/11346 [26:43<4:50:10, 1.68s/it]
1210
  8%|▊ | 956/11346 [26:44<4:50:10, 1.68s/it]
1211
  8%|▊ | 957/11346 [26:46<4:50:18, 1.68s/it]
1212
  8%|▊ | 958/11346 [26:48<4:50:12, 1.68s/it]
1213
  8%|▊ | 959/11346 [26:49<4:49:16, 1.67s/it]
1214
  8%|▊ | 960/11346 [26:51<4:48:29, 1.67s/it]
1215
  8%|▊ | 961/11346 [26:53<4:48:08, 1.66s/it]
1216
  8%|▊ | 962/11346 [26:54<4:47:46, 1.66s/it]
1217
  8%|▊ | 963/11346 [26:56<4:47:19, 1.66s/it]
1218
  8%|▊ | 964/11346 [26:58<4:46:57, 1.66s/it]
1219
  9%|▊ | 965/11346 [26:59<4:46:44, 1.66s/it]
1220
  9%|▊ | 966/11346 [27:01<4:46:35, 1.66s/it]
1221
  9%|▊ | 967/11346 [27:03<4:46:30, 1.66s/it]
1222
  9%|▊ | 968/11346 [27:04<4:46:48, 1.66s/it]
1223
  9%|▊ | 969/11346 [27:06<4:47:47, 1.66s/it]
1224
  9%|▊ | 970/11346 [27:08<4:48:03, 1.67s/it]
1225
  9%|▊ | 971/11346 [27:09<4:48:29, 1.67s/it]
1226
  9%|▊ | 972/11346 [27:11<4:48:49, 1.67s/it]
1227
  9%|▊ | 973/11346 [27:13<4:49:01, 1.67s/it]
1228
  9%|▊ | 974/11346 [27:14<4:49:08, 1.67s/it]
1229
  9%|▊ | 975/11346 [27:16<4:49:18, 1.67s/it]
1230
  9%|▊ | 976/11346 [27:18<4:49:31, 1.68s/it]
1231
  9%|▊ | 977/11346 [27:19<4:49:28, 1.68s/it]
1232
  9%|▊ | 978/11346 [27:21<4:49:20, 1.67s/it]
1233
  9%|▊ | 979/11346 [27:23<4:49:30, 1.68s/it]
1234
  9%|▊ | 980/11346 [27:24<4:49:38, 1.68s/it]
1235
  9%|▊ | 981/11346 [27:26<4:49:21, 1.68s/it]
1236
  9%|▊ | 982/11346 [27:28<4:49:27, 1.68s/it]
1237
  9%|▊ | 983/11346 [27:29<4:49:37, 1.68s/it]
1238
  9%|▊ | 984/11346 [27:31<4:49:31, 1.68s/it]
1239
  9%|▊ | 985/11346 [27:33<4:49:24, 1.68s/it]
1240
  9%|▊ | 986/11346 [27:34<4:49:08, 1.67s/it]
1241
  9%|▊ | 987/11346 [27:36<4:49:02, 1.67s/it]
1242
  9%|▊ | 988/11346 [27:38<4:49:15, 1.68s/it]
1243
  9%|▊ | 989/11346 [27:39<4:48:55, 1.67s/it]
1244
  9%|▊ | 990/11346 [27:41<4:48:56, 1.67s/it]
1245
  9%|▊ | 991/11346 [27:43<4:48:55, 1.67s/it]
1246
  9%|▊ | 992/11346 [27:45<4:49:00, 1.67s/it]
1247
  9%|▉ | 993/11346 [27:46<4:49:17, 1.68s/it]
1248
  9%|▉ | 994/11346 [27:48<4:49:04, 1.68s/it]
1249
  9%|▉ | 995/11346 [27:50<4:49:10, 1.68s/it]
1250
  9%|▉ | 996/11346 [27:51<4:49:07, 1.68s/it]
1251
  9%|▉ | 997/11346 [27:53<4:49:17, 1.68s/it]
1252
  9%|▉ | 998/11346 [27:55<4:49:20, 1.68s/it]
1253
  9%|▉ | 999/11346 [27:56<4:49:15, 1.68s/it]
1254
  9%|▉ | 1000/11346 [27:58<4:49:43, 1.68s/it]
1255
 
1256
  9%|▉ | 1000/11346 [27:58<4:49:43, 1.68s/it][INFO|trainer.py:3662] 2024-06-04 01:29:49,519 >> ***** Running Evaluation *****
1257
+ [INFO|trainer.py:3664] 2024-06-04 01:29:49,519 >> Num examples = 1840
1258
+ [INFO|trainer.py:3667] 2024-06-04 01:29:49,519 >> Batch size = 48
1259
+ {'loss': 5.1118, 'grad_norm': 0.8546377420425415, 'learning_rate': 8.816009873931059e-05, 'epoch': 0.13}
1260
+ {'loss': 3.406, 'grad_norm': 0.8593683838844299, 'learning_rate': 9.59831475011252e-05, 'epoch': 0.26}
1261
+
1262
+
1263
  0%| | 0/39 [00:00<?, ?it/s]
1264
+
1265
  5%|▌ | 2/39 [00:02<00:54, 1.48s/it]
1266
+
1267
  8%|▊ | 3/39 [00:05<01:15, 2.10s/it]
1268
+
1269
  10%|█ | 4/39 [00:08<01:24, 2.42s/it]
1270
+
1271
  13%|█▎ | 5/39 [00:11<01:28, 2.61s/it]
1272
+
1273
  15%|█▌ | 6/39 [00:14<01:29, 2.72s/it]
1274
+
1275
  18%|█▊ | 7/39 [00:17<01:29, 2.80s/it]
1276
+
1277
  21%|██ | 8/39 [00:20<01:28, 2.85s/it]
1278
+
1279
  23%|██▎ | 9/39 [00:23<01:26, 2.88s/it]
1280
+
1281
  26%|██▌ | 10/39 [00:26<01:24, 2.91s/it]
1282
+
1283
  28%|██▊ | 11/39 [00:29<01:21, 2.92s/it]
1284
+
1285
  31%|███ | 12/39 [00:32<01:19, 2.93s/it]
1286
+
1287
  33%|███▎ | 13/39 [00:35<01:16, 2.94s/it]
1288
+
1289
  36%|███▌ | 14/39 [00:38<01:13, 2.95s/it]
1290
+
1291
  38%|███▊ | 15/39 [00:41<01:10, 2.95s/it]
1292
+
1293
  41%|████ | 16/39 [00:44<01:07, 2.95s/it]
1294
+
1295
  44%|████▎ | 17/39 [00:47<01:04, 2.95s/it]
1296
+
1297
  46%|████▌ | 18/39 [00:50<01:01, 2.94s/it]
1298
+
1299
  49%|████▊ | 19/39 [00:53<00:58, 2.94s/it]
1300
+
1301
  51%|█████▏ | 20/39 [00:56<00:55, 2.94s/it]
1302
+
1303
  54%|█████▍ | 21/39 [00:59<00:52, 2.94s/it]
1304
+
1305
  56%|█████▋ | 22/39 [01:02<00:50, 2.94s/it]
1306
+
1307
  59%|█████▉ | 23/39 [01:04<00:47, 2.94s/it]
1308
+
1309
  62%|██████▏ | 24/39 [01:07<00:44, 2.94s/it]
1310
+
1311
  64%|██████▍ | 25/39 [01:10<00:41, 2.94s/it]
1312
+
1313
  67%|██████▋ | 26/39 [01:13<00:38, 2.94s/it]
1314
+
1315
  69%|██████▉ | 27/39 [01:16<00:35, 2.94s/it]
1316
+
1317
  72%|███████▏ | 28/39 [01:19<00:32, 2.94s/it]
1318
+
1319
  74%|███████▍ | 29/39 [01:22<00:29, 2.94s/it]
1320
+
1321
  77%|███████▋ | 30/39 [01:25<00:26, 2.94s/it]
1322
+
1323
  79%|███████▉ | 31/39 [01:28<00:23, 2.94s/it]
1324
+
1325
  82%|████████▏ | 32/39 [01:31<00:20, 2.95s/it]
1326
+
1327
  85%|████████▍ | 33/39 [01:34<00:17, 2.95s/it]
1328
+
1329
  87%|████████▋ | 34/39 [01:37<00:14, 2.96s/it]
1330
+
1331
  90%|████████▉ | 35/39 [01:40<00:11, 2.96s/it]
1332
+
1333
  92%|█████████▏| 36/39 [01:43<00:08, 2.96s/it]
1334
+
1335
  95%|█████████▍| 37/39 [01:46<00:05, 2.96s/it]
1336
+
1337
  97%|█████████▋| 38/39 [01:49<00:02, 2.93s/it]
1338
+
1339
+
1340
 
1341
 
1342
+
1343
  9%|▉ | 1000/11346 [30:07<4:49:43, 1.68s/it]
1344
+
1345
  [INFO|trainer.py:3353] 2024-06-04 01:31:58,493 >> Saving model checkpoint to ./training_outputs_job_116987_1_04-06_01-01/checkpoint-1000
1346
+ [INFO|configuration_utils.py:471] 2024-06-04 01:31:58,504 >> Configuration saved in ./training_outputs_job_116987_1_04-06_01-01/checkpoint-1000/config.json
1347
+ [INFO|configuration_utils.py:705] 2024-06-04 01:31:58,509 >> Configuration saved in ./training_outputs_job_116987_1_04-06_01-01/checkpoint-1000/generation_config.json
1348
+ [INFO|modeling_utils.py:2592] 2024-06-04 01:31:59,417 >> Model weights saved in ./training_outputs_job_116987_1_04-06_01-01/checkpoint-1000/model.safetensors
1349
+ [INFO|tokenization_utils_base.py:2503] 2024-06-04 01:31:59,430 >> tokenizer config file saved in ./training_outputs_job_116987_1_04-06_01-01/checkpoint-1000/tokenizer_config.json
1350
+ [INFO|tokenization_utils_base.py:2512] 2024-06-04 01:31:59,434 >> Special tokens file saved in ./training_outputs_job_116987_1_04-06_01-01/checkpoint-1000/special_tokens_map.json
1351
+ [INFO|tokenization_utils_base.py:2503] 2024-06-04 01:32:01,652 >> tokenizer config file saved in ./training_outputs_job_116987_1_04-06_01-01/tokenizer_config.json
1352
+ [INFO|tokenization_utils_base.py:2512] 2024-06-04 01:32:01,656 >> Special tokens file saved in ./training_outputs_job_116987_1_04-06_01-01/special_tokens_map.json
1353
+ /home/dshteyma/miniconda3/lib/python3.9/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.
1354
+ warnings.warn('Was asked to gather along dimension 0, but all '
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b29f07972e09b7e99ddb0e5808e0d88a17501a11c554772a8caa6699722d71ee
3
  size 272123144
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85a2564ab57b7b37bcdcfd2e43c48a69cbb78c4a211d0fbf6d340595efdecd4d
3
  size 272123144
pip_freeze.txt ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==2.1.0
2
+ accelerate==0.26.1
3
+ aiofiles==23.2.1
4
+ aiohttp==3.8.6
5
+ aiosignal==1.3.1
6
+ altair==5.3.0
7
+ annotated-types==0.6.0
8
+ antlr4-python3-runtime==4.9.3
9
+ anyio==4.0.0
10
+ argon2-cffi==23.1.0
11
+ argon2-cffi-bindings==21.2.0
12
+ arrow==1.3.0
13
+ asttokens==2.4.0
14
+ astunparse==1.6.3
15
+ async-lru==2.0.4
16
+ async-timeout==4.0.3
17
+ attrs==23.1.0
18
+ auto-gptq==0.6.0
19
+ Babel==2.13.0
20
+ backcall @ file:///home/ktietz/src/ci/backcall_1611930011877/work
21
+ beartype==0.17.2
22
+ beautifulsoup4==4.12.2
23
+ bitsandbytes==0.43.1
24
+ bleach==6.1.0
25
+ blis==0.7.11
26
+ brotlipy==0.7.0
27
+ cachetools==5.3.2
28
+ catalogue==2.0.10
29
+ certifi==2023.7.22
30
+ cffi==1.16.0
31
+ chardet==5.2.0
32
+ charset-normalizer==3.3.0
33
+ click==8.1.7
34
+ cloudpathlib==0.16.0
35
+ cloudpickle==3.0.0
36
+ colorama @ file:///tmp/build/80754af9/colorama_1607707115595/work
37
+ coloredlogs==15.0.1
38
+ comm==0.1.4
39
+ conda==4.12.0
40
+ conda-content-trust @ file:///tmp/build/80754af9/conda-content-trust_1617045594566/work
41
+ conda-package-handling @ file:///tmp/build/80754af9/conda-package-handling_1649105784853/work
42
+ confection==0.1.4
43
+ contextlib2==21.6.0
44
+ contexttimer==0.3.3
45
+ contourpy==1.1.1
46
+ cryptography @ file:///tmp/build/80754af9/cryptography_1639414572950/work
47
+ cycler==0.12.1
48
+ cymem==2.0.8
49
+ dataclasses-json==0.6.4
50
+ DataProperty==1.0.1
51
+ datasets==2.19.1
52
+ debugpy==1.8.0
53
+ decorator @ file:///opt/conda/conda-bld/decorator_1643638310831/work
54
+ defusedxml==0.7.1
55
+ dill==0.3.7
56
+ dnspython==2.6.1
57
+ docstring_parser==0.16
58
+ dos2unix==1
59
+ einops==0.8.0
60
+ eval_type_backport==0.2.0
61
+ evaluate==0.4.1
62
+ exceptiongroup==1.1.3
63
+ executing==2.0.0
64
+ fastapi==0.111.0
65
+ fastapi-cli==0.0.2
66
+ fastchat==0.1.0
67
+ fastjsonschema==2.18.1
68
+ ffmpy==0.3.2
69
+ filelock==3.12.4
70
+ fire==0.5.0
71
+ flash-attn==2.5.8
72
+ flatbuffers==23.5.26
73
+ fonttools==4.43.1
74
+ fqdn==1.5.1
75
+ frozenlist==1.4.0
76
+ fschat==0.2.36
77
+ fsspec==2023.6.0
78
+ gast==0.5.4
79
+ gekko==1.0.6
80
+ globals==0.3.36
81
+ google-auth==2.27.0
82
+ google-auth-oauthlib==1.2.0
83
+ google-pasta==0.2.0
84
+ gradio==4.29.0
85
+ gradio_client==0.16.1
86
+ greenlet==3.0.3
87
+ grpcio==1.60.1
88
+ h11==0.14.0
89
+ h5py==3.10.0
90
+ httpcore==1.0.5
91
+ httptools==0.6.1
92
+ httpx==0.27.0
93
+ huggingface-hub==0.22.2
94
+ humanfriendly==10.0
95
+ hydra-core==1.3.2
96
+ hydra-joblib-launcher==1.2.0
97
+ hydra-submitit-launcher==1.2.0
98
+ idna==3.4
99
+ importlib-metadata==6.8.0
100
+ importlib-resources==6.1.0
101
+ ipykernel==6.25.2
102
+ ipython==8.18.1
103
+ isoduration==20.11.0
104
+ jedi==0.19.1
105
+ Jinja2==3.1.2
106
+ joblib==1.3.2
107
+ json5==0.9.14
108
+ jsonlines==4.0.0
109
+ jsonpatch==1.33
110
+ jsonpointer==2.4
111
+ jsonschema==4.19.1
112
+ jsonschema-specifications==2023.7.1
113
+ jupyter-events==0.7.0
114
+ jupyter-lsp==2.2.0
115
+ jupyter_client==8.3.1
116
+ jupyter_core==5.3.2
117
+ jupyter_server==2.7.3
118
+ jupyter_server_terminals==0.4.4
119
+ jupyterlab==4.0.6
120
+ jupyterlab-pygments==0.2.2
121
+ jupyterlab_server==2.25.0
122
+ keras==2.15.0
123
+ kiwisolver==1.4.5
124
+ langchain==0.1.8
125
+ langchain-community==0.0.21
126
+ langchain-core==0.1.25
127
+ langcodes==3.3.0
128
+ langdetect==1.0.9
129
+ langsmith==0.1.5
130
+ libclang==16.0.6
131
+ lxml==5.1.0
132
+ Markdown==3.5.2
133
+ markdown-it-py==3.0.0
134
+ markdown2==2.4.13
135
+ MarkupSafe==2.1.5
136
+ marshmallow==3.20.2
137
+ matplotlib==3.8.0
138
+ matplotlib-inline @ file:///opt/conda/conda-bld/matplotlib-inline_1662014470464/work
139
+ mbstrdecoder==1.1.3
140
+ mdurl==0.1.2
141
+ mistune==3.0.2
142
+ ml-collections==0.1.1
143
+ ml-dtypes==0.2.0
144
+ more-itertools==10.2.0
145
+ mpmath==1.3.0
146
+ multidict==6.0.4
147
+ multiprocess==0.70.15
148
+ murmurhash==1.0.10
149
+ mypy-extensions==1.0.0
150
+ nbclient==0.8.0
151
+ nbconvert==7.9.2
152
+ nbformat==5.9.2
153
+ nest-asyncio==1.5.8
154
+ networkx==3.1
155
+ nh3==0.2.17
156
+ ninja==1.11.1.1
157
+ nltk==3.8.1
158
+ notebook==7.0.4
159
+ notebook_shim==0.2.3
160
+ numexpr==2.9.0
161
+ numpy==1.26.0
162
+ nvidia-cublas-cu12==12.1.3.1
163
+ nvidia-cuda-cupti-cu12==12.1.105
164
+ nvidia-cuda-nvrtc-cu12==12.1.105
165
+ nvidia-cuda-runtime-cu12==12.1.105
166
+ nvidia-cudnn-cu12==8.9.2.26
167
+ nvidia-cufft-cu12==11.0.2.54
168
+ nvidia-curand-cu12==10.3.2.106
169
+ nvidia-cusolver-cu12==11.4.5.107
170
+ nvidia-cusparse-cu12==12.1.0.106
171
+ nvidia-ml-py3==7.352.0
172
+ nvidia-nccl-cu12==2.18.1
173
+ nvidia-nvjitlink-cu12==12.2.140
174
+ nvidia-nvtx-cu12==12.1.105
175
+ oauthlib==3.2.2
176
+ omegaconf==2.3.0
177
+ opt-einsum==3.3.0
178
+ optimum==1.16.2
179
+ orjson==3.10.3
180
+ overrides==7.4.0
181
+ packaging==23.2
182
+ pandas==2.1.1
183
+ pandocfilters==1.5.0
184
+ parso @ file:///opt/conda/conda-bld/parso_1641458642106/work
185
+ pathvalidate==3.2.0
186
+ patsy==0.5.3
187
+ peft==0.8.2
188
+ pexpect @ file:///tmp/build/80754af9/pexpect_1605563209008/work
189
+ pickleshare @ file:///tmp/build/80754af9/pickleshare_1606932040724/work
190
+ Pillow==10.0.1
191
+ platformdirs==3.11.0
192
+ plotly==5.17.0
193
+ plotly-express==0.4.1
194
+ portalocker==2.8.2
195
+ preshed==3.0.9
196
+ prometheus-client==0.17.1
197
+ prompt-toolkit==3.0.43
198
+ protobuf==3.20.3
199
+ psutil==5.9.5
200
+ ptyprocess @ file:///tmp/build/80754af9/ptyprocess_1609355006118/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl
201
+ pure-eval @ file:///opt/conda/conda-bld/pure_eval_1646925070566/work
202
+ pyarrow==13.0.0
203
+ pyarrow-hotfix==0.6
204
+ pyasn1==0.5.1
205
+ pyasn1-modules==0.3.0
206
+ pybind11==2.11.1
207
+ pycosat==0.6.3
208
+ pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work
209
+ pydantic==2.6.1
210
+ pydantic_core==2.16.2
211
+ pydub==0.25.1
212
+ Pygments==2.16.1
213
+ pyOpenSSL @ file:///opt/conda/conda-bld/pyopenssl_1643788558760/work
214
+ pyparsing==3.1.1
215
+ PySocks @ file:///tmp/build/80754af9/pysocks_1605305812635/work
216
+ pytablewriter==1.2.0
217
+ python-dateutil==2.8.2
218
+ python-dotenv==1.0.1
219
+ python-helper==0.3.74
220
+ python-json-logger==2.0.7
221
+ python-multipart==0.0.9
222
+ pytz==2023.3.post1
223
+ PyYAML==6.0.1
224
+ pyzmq==25.1.1
225
+ referencing==0.30.2
226
+ regex==2023.10.3
227
+ requests==2.31.0
228
+ requests-oauthlib==1.3.1
229
+ responses==0.18.0
230
+ rfc3339-validator==0.1.4
231
+ rfc3986-validator==0.1.1
232
+ rich==13.7.1
233
+ rotary-embedding-torch==0.5.3
234
+ rouge==1.0.1
235
+ rouge-score==0.1.2
236
+ rpds-py==0.10.4
237
+ rsa==4.9
238
+ ruamel-yaml-conda @ file:///tmp/build/80754af9/ruamel_yaml_1616016711199/work
239
+ ruff==0.4.3
240
+ sacrebleu==2.4.0
241
+ safetensors==0.4.3
242
+ scikit-learn==1.4.1.post1
243
+ scipy==1.11.3
244
+ seaborn==0.13.0
245
+ semantic-version==2.10.0
246
+ Send2Trash==1.8.2
247
+ sentencepiece==0.2.0
248
+ shellingham==1.5.4
249
+ shortuuid==1.0.13
250
+ shtab==1.7.1
251
+ six @ file:///tmp/build/80754af9/six_1644875935023/work
252
+ smart-open==6.4.0
253
+ sniffio==1.3.0
254
+ soupsieve==2.5
255
+ spacy==3.7.4
256
+ spacy-legacy==3.0.12
257
+ spacy-loggers==1.0.5
258
+ speculative-decoding==0.1.2
259
+ SQLAlchemy==2.0.27
260
+ sqlitedict==2.1.0
261
+ srsly==2.4.8
262
+ stack-data==0.6.3
263
+ starlette==0.37.2
264
+ statsmodels==0.14.0
265
+ submitit==1.5.1
266
+ svgwrite==1.4.3
267
+ sympy==1.12
268
+ tabledata==1.3.3
269
+ tabulate==0.9.0
270
+ tcolorpy==0.1.4
271
+ tenacity==8.2.3
272
+ tensorboard==2.15.1
273
+ tensorboard-data-server==0.7.2
274
+ tensorflow==2.15.0.post1
275
+ tensorflow-estimator==2.15.0
276
+ tensorflow-io-gcs-filesystem==0.35.0
277
+ tensorrt==8.6.1.post1
278
+ tensorrt-bindings==8.6.1
279
+ tensorrt-libs==8.6.1
280
+ termcolor==2.4.0
281
+ terminado==0.17.1
282
+ thinc==8.2.3
283
+ threadpoolctl==3.3.0
284
+ tiktoken==0.6.0
285
+ tinycss2==1.2.1
286
+ tk==0.1.0
287
+ tokenizers==0.19.1
288
+ tomli==2.0.1
289
+ tomlkit==0.12.0
290
+ toolz==0.12.1
291
+ torch==2.1.0
292
+ torchaudio==2.1.0
293
+ torchvision==0.16.0
294
+ tornado==6.3.3
295
+ tqdm==4.66.1
296
+ tqdm-multiprocess==0.0.11
297
+ traitlets==5.11.2
298
+ -e git+https://github.com/huggingface/transformers.git@bbaa8ceff696c479aecdb4575b2deb1349efd3aa#egg=transformers
299
+ triton==2.1.0
300
+ trl==0.8.6
301
+ typepy==1.3.2
302
+ typer==0.12.3
303
+ types-python-dateutil==2.8.19.14
304
+ typing-inspect==0.9.0
305
+ typing_extensions==4.8.0
306
+ tyro==0.8.3
307
+ tzdata==2023.3
308
+ ujson==5.9.0
309
+ unsloth @ git+https://github.com/unslothai/unsloth.git@4211cc01409e3ced4f7abebaf68e244193b46e2c
310
+ uri-template==1.3.0
311
+ urllib3==2.0.6
312
+ uvicorn==0.29.0
313
+ uvloop==0.19.0
314
+ wasabi==1.1.2
315
+ watchfiles==0.21.0
316
+ wavedrom==2.0.3.post3
317
+ wcwidth==0.2.8
318
+ weasel==0.3.4
319
+ webcolors==1.13
320
+ webencodings==0.5.1
321
+ websocket-client==1.6.4
322
+ websockets==11.0.3
323
+ Werkzeug==3.0.1
324
+ word2number==1.1
325
+ wrapt==1.14.1
326
+ xformers @ https://download.pytorch.org/whl/cu121/xformers-0.0.22.post7-cp39-cp39-manylinux2014_x86_64.whl
327
+ xxhash==3.4.1
328
+ yarl==1.9.2
329
+ zipp==3.17.0
330
+ zstandard==0.22.0
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b997f16f1f5bfcc99bd4bc2fc9d1821e67341b4093297f45f67ca5d81966f1ba
3
  size 5240
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:989480cea002c6608e056242fe1a9579f9b0ce114baac8ebf59373c8a1228b15
3
  size 5240