Training in progress, step 1000
Browse files- cmd.txt +1 -0
- commit.txt +5 -0
- events.out.tfevents.1717488111.isl-gpu33.2434801.0 +3 -0
- experiment_code/config/config1.yaml +26 -0
- experiment_code/config/config_redpajama.yaml +27 -0
- experiment_code/prepare_sharegpt.py +44 -0
- experiment_code/requirements.txt +2 -0
- experiment_code/run_clm.py +754 -0
- experiment_code/submit_job.sh +91 -0
- log.txt +307 -0
- model.safetensors +1 -1
- pip_freeze.txt +330 -0
- training_args.bin +1 -1
cmd.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/var/spool/slurmd/job116988/slurm_script 04-06_01-01
|
commit.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
commit c4fe47d125efdcc428a5dd46500d754dc07f4a94
|
2 |
+
Author: Shteyman <[email protected]>
|
3 |
+
Date: Sun Jun 2 08:25:22 2024 -0700
|
4 |
+
|
5 |
+
clean version of run_clm.py
|
events.out.tfevents.1717488111.isl-gpu33.2434801.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f45ed4aeee7fe305f565aefaa0438afb9c9eb197a3d37c0f97c5f88ba132713
|
3 |
+
size 5696
|
experiment_code/config/config1.yaml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
config_name: "JackFram/llama-68m"
|
2 |
+
tokenizer_name: "JackFram/llama-68m"
|
3 |
+
validation_split_percentage: 2
|
4 |
+
train_file: "/home/dshteyma/shareGPT_data/ShareGPT_V3_unfiltered_cleaned_split.json"
|
5 |
+
dataset_name_hub: "anon8231489123/ShareGPT_Vicuna_unfiltered/ShareGPT_V3_unfiltered_cleaned_split.json"
|
6 |
+
dataset_name_local: "ShareGPT"
|
7 |
+
# max_train_samples: 1000
|
8 |
+
# max_eval_samples: 10
|
9 |
+
do_train: True
|
10 |
+
do_eval: True
|
11 |
+
output_dir: "/home/dshteyma/target_draft_coupling_code/target_draft_training/training_outputs"
|
12 |
+
overwrite_output_dir: True
|
13 |
+
per_device_train_batch_size: 4
|
14 |
+
gradient_accumulation_steps: 1
|
15 |
+
report_to: "tensorboard"
|
16 |
+
logging_dir: "/home/dshteyma/target_draft_coupling_code/target_draft_training/training_outputs"
|
17 |
+
logging_steps: 500
|
18 |
+
save_steps: 1000
|
19 |
+
eval_strategy: "steps"
|
20 |
+
eval_steps: 1000
|
21 |
+
learning_rate: 0.0001
|
22 |
+
gradient_accumulation_steps: 1
|
23 |
+
weight_decay: 0.01
|
24 |
+
warmup_ratio: 0.05
|
25 |
+
push_to_hub: True
|
26 |
+
hub_model_id: "DorinSht/recreate_llama_68M_vanilla"
|
experiment_code/config/config_redpajama.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
config_name: "JackFram/llama-68m"
|
2 |
+
tokenizer_name: "JackFram/llama-68m"
|
3 |
+
validation_split_percentage: 2
|
4 |
+
train_file: "/home/dshteyma/target_draft_coupling_code/dataset_dict.json"
|
5 |
+
dataset_name_local: "RedPajama"
|
6 |
+
dataset_name: "togethercomputer/RedPajama-Data-1T-Sample"
|
7 |
+
dataset_name_hub: "togethercomputer/RedPajama-Data-1T-Sample"
|
8 |
+
# max_train_samples: 1000
|
9 |
+
# max_eval_samples: 10
|
10 |
+
do_train: True
|
11 |
+
do_eval: True
|
12 |
+
output_dir: "/home/dshteyma/target_draft_coupling_code/target_draft_training/training_outputs"
|
13 |
+
overwrite_output_dir: True
|
14 |
+
per_device_train_batch_size: 4
|
15 |
+
gradient_accumulation_steps: 3
|
16 |
+
report_to: "tensorboard"
|
17 |
+
logging_dir: "/home/dshteyma/target_draft_coupling_code/target_draft_training/training_outputs"
|
18 |
+
logging_steps: 10000
|
19 |
+
save_steps: 10000
|
20 |
+
eval_strategy: "steps"
|
21 |
+
eval_steps: 10000
|
22 |
+
learning_rate: 0.0001
|
23 |
+
weight_decay: 0.01
|
24 |
+
warmup_ratio: 0.05
|
25 |
+
push_to_hub: False
|
26 |
+
hub_model_id: "DorinSht/llama_68M_redpajama"
|
27 |
+
hub_strategy: "all_checkpoints"
|
experiment_code/prepare_sharegpt.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This script is largely copied from the Vicuna repo: https://github.com/lm-sys/FastChat/blob/main/fastchat/data/split_long_conversation.py
|
3 |
+
We fixed a bug in `split_one_sample`, which previously includes long conversations in the processed data. Now we skip these long conversations.
|
4 |
+
"""
|
5 |
+
import argparse
|
6 |
+
from concurrent.futures import ProcessPoolExecutor
|
7 |
+
import json
|
8 |
+
import transformers
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
def shareGPT_pipeline(tokenizer, raw_datasets, overwrite_cache):
|
12 |
+
|
13 |
+
def preprocess_conversation(convo):
|
14 |
+
key_mapping = {"role" : "from", "content" : "value"}
|
15 |
+
value_mapping = {"user" : "user", "human" : "user", "gpt" : "assistant", 'system': 'assitant', 'bing': 'assitant', 'chatgpt': 'assitant', 'bard': 'assitant'}
|
16 |
+
# mapping = {"human" : "user", "gpt" : "assitant"}
|
17 |
+
if value_mapping[convo[0][key_mapping['role']]] != 'user':
|
18 |
+
convo = convo[1:]
|
19 |
+
preproc_convos_user = [{"role": 'user', "content": convo_elem[key_mapping['content']]} for i, convo_elem in enumerate(convo) if (i % 2 == 0 and value_mapping[convo_elem[key_mapping['role']]] == 'user')]
|
20 |
+
preproc_convos_assistant = [{"role": 'assistant', "content": convo_elem[key_mapping['content']]} for i, convo_elem in enumerate(convo) if (i % 2 == 1 and value_mapping[convo_elem[key_mapping['role']]] == 'assistant')]
|
21 |
+
if len(preproc_convos_user) != len(preproc_convos_assistant):
|
22 |
+
return []
|
23 |
+
preproc_convos = [conv_elem for pair in zip(preproc_convos_user, preproc_convos_assistant) for conv_elem in pair]
|
24 |
+
return preproc_convos
|
25 |
+
|
26 |
+
def filter_incorrect_conversations(examples):
|
27 |
+
convos = examples["conversations"]
|
28 |
+
ids_to_remove = [True if preprocess_conversation(convo) == [] else False for convo in convos]
|
29 |
+
return { "ids_to_remove" : ids_to_remove, }
|
30 |
+
|
31 |
+
def formatting_prompts_func(examples):
|
32 |
+
convos = examples["conversations"]
|
33 |
+
# preproc_convos = [convo for convo in convos if (convo[0]['from'] == 'human' or convo[0]['from'] == 'user')]
|
34 |
+
preproc_convos = [preprocess_conversation(convo) for convo in convos]
|
35 |
+
# preproc_convos2 = [preproc_convo for preproc_convo in preproc_convos if preproc_convo[0]['role'] == 'user']
|
36 |
+
texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for i, convo in enumerate(preproc_convos)]
|
37 |
+
return { "text" : texts,}
|
38 |
+
|
39 |
+
filtered_datasets = raw_datasets.filter(lambda example: example['conversations'] != [], load_from_cache_file=not overwrite_cache,)
|
40 |
+
dataset = filtered_datasets.map(filter_incorrect_conversations, batched = True, load_from_cache_file=not overwrite_cache,)
|
41 |
+
filtered_datasets2 = dataset.filter(lambda example: example['ids_to_remove'] == False, load_from_cache_file=not overwrite_cache,)
|
42 |
+
raw_datasets_preprocessed = filtered_datasets2.map(formatting_prompts_func, batched = True, load_from_cache_file=not overwrite_cache,)
|
43 |
+
|
44 |
+
return raw_datasets_preprocessed
|
experiment_code/requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
huggingface-hub==0.22.2
|
2 |
+
-e git+https://github.com/huggingface/transformers.git@bbaa8ceff696c479aecdb4575b2deb1349efd3aa#egg=transformers
|
experiment_code/run_clm.py
ADDED
@@ -0,0 +1,754 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
|
18 |
+
|
19 |
+
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
|
20 |
+
https://huggingface.co/models?filter=text-generation
|
21 |
+
"""
|
22 |
+
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
|
23 |
+
import random
|
24 |
+
import logging
|
25 |
+
import math
|
26 |
+
import os
|
27 |
+
from datetime import datetime
|
28 |
+
import sys
|
29 |
+
import warnings
|
30 |
+
from dataclasses import dataclass, field
|
31 |
+
from itertools import chain
|
32 |
+
from typing import Optional
|
33 |
+
import datasets
|
34 |
+
import evaluate
|
35 |
+
import torch
|
36 |
+
from datasets import load_dataset
|
37 |
+
import argparse
|
38 |
+
import transformers
|
39 |
+
from prepare_sharegpt import shareGPT_pipeline
|
40 |
+
from transformers import (
|
41 |
+
CONFIG_MAPPING,
|
42 |
+
MODEL_FOR_CAUSAL_LM_MAPPING,
|
43 |
+
AutoConfig,
|
44 |
+
AutoModelForCausalLM,
|
45 |
+
AutoTokenizer,
|
46 |
+
HfArgumentParser,
|
47 |
+
Trainer,
|
48 |
+
TrainingArguments,
|
49 |
+
default_data_collator,
|
50 |
+
set_seed,
|
51 |
+
)
|
52 |
+
from transformers.testing_utils import CaptureLogger
|
53 |
+
from transformers.trainer_utils import get_last_checkpoint
|
54 |
+
from transformers.utils import check_min_version, send_example_telemetry
|
55 |
+
from transformers.utils.versions import require_version
|
56 |
+
from functools import partial
|
57 |
+
|
58 |
+
from omegaconf import DictConfig, OmegaConf
|
59 |
+
import hydra
|
60 |
+
|
61 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
62 |
+
check_min_version("4.41.0.dev0")
|
63 |
+
|
64 |
+
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
65 |
+
|
66 |
+
logger = logging.getLogger(__name__)
|
67 |
+
|
68 |
+
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
|
69 |
+
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
70 |
+
|
71 |
+
random.seed(42)
|
72 |
+
|
73 |
+
@dataclass
|
74 |
+
class ModelArguments:
|
75 |
+
"""
|
76 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
77 |
+
"""
|
78 |
+
|
79 |
+
model_name_or_path: Optional[str] = field(
|
80 |
+
default=None,
|
81 |
+
metadata={
|
82 |
+
"help": (
|
83 |
+
"The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
|
84 |
+
)
|
85 |
+
},
|
86 |
+
)
|
87 |
+
model_type: Optional[str] = field(
|
88 |
+
default=None,
|
89 |
+
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
|
90 |
+
)
|
91 |
+
padding_side: str = field(
|
92 |
+
default="right", metadata={"help": "The padding side in tokenizer"}
|
93 |
+
)
|
94 |
+
config_overrides: Optional[str] = field(
|
95 |
+
default=None,
|
96 |
+
metadata={
|
97 |
+
"help": (
|
98 |
+
"Override some existing default config settings when a model is trained from scratch. Example: "
|
99 |
+
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
|
100 |
+
)
|
101 |
+
},
|
102 |
+
)
|
103 |
+
config_name: Optional[str] = field(
|
104 |
+
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
105 |
+
)
|
106 |
+
tokenizer_name: Optional[str] = field(
|
107 |
+
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
108 |
+
)
|
109 |
+
cache_dir: Optional[str] = field(
|
110 |
+
default=None,
|
111 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
112 |
+
)
|
113 |
+
use_fast_tokenizer: bool = field(
|
114 |
+
default=True,
|
115 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
116 |
+
)
|
117 |
+
model_revision: str = field(
|
118 |
+
default="main",
|
119 |
+
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
120 |
+
)
|
121 |
+
token: str = field(
|
122 |
+
default=None,
|
123 |
+
metadata={
|
124 |
+
"help": (
|
125 |
+
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
126 |
+
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
127 |
+
)
|
128 |
+
},
|
129 |
+
)
|
130 |
+
use_auth_token: bool = field(
|
131 |
+
default=None,
|
132 |
+
metadata={
|
133 |
+
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
134 |
+
},
|
135 |
+
)
|
136 |
+
trust_remote_code: bool = field(
|
137 |
+
default=True,
|
138 |
+
metadata={
|
139 |
+
"help": (
|
140 |
+
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
|
141 |
+
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
|
142 |
+
"execute code present on the Hub on your local machine."
|
143 |
+
)
|
144 |
+
},
|
145 |
+
)
|
146 |
+
torch_dtype: Optional[str] = field(
|
147 |
+
default=None,
|
148 |
+
metadata={
|
149 |
+
"help": (
|
150 |
+
"Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
|
151 |
+
"dtype will be automatically derived from the model's weights."
|
152 |
+
),
|
153 |
+
"choices": ["auto", "bfloat16", "float16", "float32"],
|
154 |
+
},
|
155 |
+
)
|
156 |
+
low_cpu_mem_usage: bool = field(
|
157 |
+
default=False,
|
158 |
+
metadata={
|
159 |
+
"help": (
|
160 |
+
"It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
|
161 |
+
"set True will benefit LLM loading time and RAM consumption."
|
162 |
+
)
|
163 |
+
},
|
164 |
+
)
|
165 |
+
|
166 |
+
def __post_init__(self):
|
167 |
+
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
|
168 |
+
raise ValueError(
|
169 |
+
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
|
170 |
+
)
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
@dataclass
|
175 |
+
class DataTrainingArguments:
|
176 |
+
"""
|
177 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
178 |
+
"""
|
179 |
+
dataset_name: Optional[str] = field(
|
180 |
+
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
181 |
+
)
|
182 |
+
dataset_name_hub: Optional[str] = field(
|
183 |
+
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
184 |
+
)
|
185 |
+
dataset_name_local: Optional[str] = field(
|
186 |
+
default=None, metadata={"help": "The name of the dataset for identification."}
|
187 |
+
)
|
188 |
+
dataset_config_name: Optional[str] = field(
|
189 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
190 |
+
)
|
191 |
+
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
192 |
+
validation_file: Optional[str] = field(
|
193 |
+
default=None,
|
194 |
+
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
195 |
+
)
|
196 |
+
max_train_samples: Optional[int] = field(
|
197 |
+
default=None,
|
198 |
+
metadata={
|
199 |
+
"help": (
|
200 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
201 |
+
"value if set."
|
202 |
+
)
|
203 |
+
},
|
204 |
+
)
|
205 |
+
max_eval_samples: Optional[int] = field(
|
206 |
+
default=None,
|
207 |
+
metadata={
|
208 |
+
"help": (
|
209 |
+
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
210 |
+
"value if set."
|
211 |
+
)
|
212 |
+
},
|
213 |
+
)
|
214 |
+
streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
|
215 |
+
block_size: Optional[int] = field(
|
216 |
+
default=None,
|
217 |
+
metadata={
|
218 |
+
"help": (
|
219 |
+
"Optional input sequence length after tokenization. "
|
220 |
+
"The training dataset will be truncated in block of this size for training. "
|
221 |
+
"Default to the model max input length for single sentence inputs (take into account special tokens)."
|
222 |
+
)
|
223 |
+
},
|
224 |
+
)
|
225 |
+
overwrite_cache: bool = field(
|
226 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
227 |
+
)
|
228 |
+
validation_split_percentage: Optional[int] = field(
|
229 |
+
default=5,
|
230 |
+
metadata={
|
231 |
+
"help": "The percentage of the train set used as validation set in case there's no validation split"
|
232 |
+
},
|
233 |
+
)
|
234 |
+
preprocessing_num_workers: Optional[int] = field(
|
235 |
+
default=None,
|
236 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
237 |
+
)
|
238 |
+
keep_linebreaks: bool = field(
|
239 |
+
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
|
240 |
+
)
|
241 |
+
lazy_preprocess: bool = False
|
242 |
+
|
243 |
+
def __post_init__(self):
|
244 |
+
if self.streaming:
|
245 |
+
require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")
|
246 |
+
|
247 |
+
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
248 |
+
raise ValueError("Need either a dataset name or a training/validation file.")
|
249 |
+
else:
|
250 |
+
if self.train_file is not None:
|
251 |
+
extension = self.train_file.split(".")[-1]
|
252 |
+
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
|
253 |
+
if self.validation_file is not None:
|
254 |
+
extension = self.validation_file.split(".")[-1]
|
255 |
+
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
|
256 |
+
|
257 |
+
# @dataclass
|
258 |
+
# class TrainingArguments(transformers.TrainingArguments):
|
259 |
+
# cache_dir: Optional[str] = field(default=None)
|
260 |
+
# optim: str = field(default="adamw_torch")
|
261 |
+
# model_max_length: int = field(
|
262 |
+
# default=2048,
|
263 |
+
# metadata={
|
264 |
+
# "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
|
265 |
+
# },
|
266 |
+
# )
|
267 |
+
|
268 |
+
def create_output_directory(dir_root_path):
|
269 |
+
# Get the current date and time
|
270 |
+
current_time = datetime.now()
|
271 |
+
# Format the date and time as a string
|
272 |
+
# Example format: YYYYMMDD_HHMMSS
|
273 |
+
formatted_time = current_time.strftime("%Y%m%d_%H%M%S")
|
274 |
+
# Define the directory name with the formatted time
|
275 |
+
directory_full_path = os.path.join(dir_root_path, f"training_outputs_{formatted_time}")
|
276 |
+
# Create the directory
|
277 |
+
os.makedirs(directory_full_path)
|
278 |
+
print(f"Directory '{directory_full_path}' created successfully.")
|
279 |
+
return directory_full_path
|
280 |
+
|
281 |
+
def main():
|
282 |
+
# See all possible arguments in src/transformers/training_args.py
|
283 |
+
# or by passing the --help flag to this script.
|
284 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
285 |
+
parser = argparse.ArgumentParser(description="parser for arguments from .py script call")
|
286 |
+
parser.add_argument('--output_dir', type=str, help='Path for training_args.output_dir')
|
287 |
+
parser.add_argument('--logging_dir', type=str, help='Path for training_args.logging_dir')
|
288 |
+
parser.add_argument('--config_file', type=str, help='An additional required option.')
|
289 |
+
args = parser.parse_args()
|
290 |
+
|
291 |
+
parser_hf = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
292 |
+
if args.config_file is not None and args.output_dir is not None and args.output_dir is not None:
|
293 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
294 |
+
# let's parse it to get our arguments.
|
295 |
+
model_args, data_args, training_args = parser_hf.parse_yaml_file(args.config_file)
|
296 |
+
training_args.output_dir = args.output_dir
|
297 |
+
training_args.logging_dir = args.logging_dir
|
298 |
+
else:
|
299 |
+
# use the preset config file defined in the slurm .sh script
|
300 |
+
# model_args, data_args, training_args = parser_hf.parse_yaml_file(os.getenv("DEFAULT_CONFIG_FILE"))
|
301 |
+
model_args, data_args, training_args = parser_hf.parse_yaml_file('./config/config1.yaml')
|
302 |
+
|
303 |
+
|
304 |
+
if model_args.use_auth_token is not None:
|
305 |
+
warnings.warn(
|
306 |
+
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
307 |
+
FutureWarning,
|
308 |
+
)
|
309 |
+
if model_args.token is not None:
|
310 |
+
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
311 |
+
model_args.token = model_args.use_auth_token
|
312 |
+
|
313 |
+
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
314 |
+
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
315 |
+
send_example_telemetry("run_clm", model_args, data_args)
|
316 |
+
|
317 |
+
# Setup logging
|
318 |
+
logging.basicConfig(
|
319 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
320 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
321 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
322 |
+
)
|
323 |
+
|
324 |
+
if training_args.should_log:
|
325 |
+
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
326 |
+
transformers.utils.logging.set_verbosity_info()
|
327 |
+
|
328 |
+
log_level = training_args.get_process_log_level()
|
329 |
+
logger.setLevel(log_level)
|
330 |
+
datasets.utils.logging.set_verbosity(log_level)
|
331 |
+
transformers.utils.logging.set_verbosity(log_level)
|
332 |
+
transformers.utils.logging.enable_default_handler()
|
333 |
+
transformers.utils.logging.enable_explicit_format()
|
334 |
+
|
335 |
+
# Log on each process the small summary:
|
336 |
+
logger.warning(
|
337 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
338 |
+
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
339 |
+
)
|
340 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
341 |
+
|
342 |
+
# Detecting last checkpoint.
|
343 |
+
last_checkpoint = None
|
344 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
345 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
346 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
347 |
+
raise ValueError(
|
348 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
349 |
+
"Use --overwrite_output_dir to overcome."
|
350 |
+
)
|
351 |
+
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
352 |
+
logger.info(
|
353 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
354 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
355 |
+
)
|
356 |
+
|
357 |
+
# Set seed before initializing model.
|
358 |
+
set_seed(training_args.seed)
|
359 |
+
|
360 |
+
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
361 |
+
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
362 |
+
# (the dataset will be downloaded automatically from the datasets Hub).
|
363 |
+
#
|
364 |
+
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
|
365 |
+
# 'text' is found. You can easily tweak this behavior (see below).
|
366 |
+
#
|
367 |
+
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
368 |
+
# download the dataset.
|
369 |
+
if data_args.dataset_name is not None:
|
370 |
+
# Downloading and loading a dataset from the hub.
|
371 |
+
raw_datasets = load_dataset(
|
372 |
+
data_args.dataset_name,
|
373 |
+
data_args.dataset_config_name,
|
374 |
+
cache_dir=model_args.cache_dir,
|
375 |
+
token=model_args.token,
|
376 |
+
streaming=data_args.streaming,
|
377 |
+
)
|
378 |
+
if "validation" not in raw_datasets.keys():
|
379 |
+
raw_datasets["validation"] = load_dataset(
|
380 |
+
data_args.dataset_name,
|
381 |
+
data_args.dataset_config_name,
|
382 |
+
split=f"train[:{data_args.validation_split_percentage}%]",
|
383 |
+
cache_dir=model_args.cache_dir,
|
384 |
+
token=model_args.token,
|
385 |
+
streaming=data_args.streaming,
|
386 |
+
)
|
387 |
+
raw_datasets["train"] = load_dataset(
|
388 |
+
data_args.dataset_name,
|
389 |
+
data_args.dataset_config_name,
|
390 |
+
split=f"train[{data_args.validation_split_percentage}%:]",
|
391 |
+
cache_dir=model_args.cache_dir,
|
392 |
+
token=model_args.token,
|
393 |
+
streaming=data_args.streaming,
|
394 |
+
)
|
395 |
+
else:
|
396 |
+
data_files = {}
|
397 |
+
dataset_args = {}
|
398 |
+
if data_args.train_file is not None:
|
399 |
+
data_files["train"] = data_args.train_file
|
400 |
+
if data_args.validation_file is not None:
|
401 |
+
data_files["validation"] = data_args.validation_file
|
402 |
+
extension = (
|
403 |
+
data_args.train_file.split(".")[-1]
|
404 |
+
if data_args.train_file is not None
|
405 |
+
else data_args.validation_file.split(".")[-1]
|
406 |
+
)
|
407 |
+
if extension == "txt":
|
408 |
+
extension = "text"
|
409 |
+
dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
|
410 |
+
raw_datasets = load_dataset(
|
411 |
+
extension,
|
412 |
+
data_files=data_files,
|
413 |
+
cache_dir=model_args.cache_dir,
|
414 |
+
token=model_args.token,
|
415 |
+
**dataset_args,
|
416 |
+
)
|
417 |
+
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
|
418 |
+
if "validation" not in raw_datasets.keys():
|
419 |
+
raw_datasets["validation"] = load_dataset(
|
420 |
+
extension,
|
421 |
+
data_files=data_files,
|
422 |
+
split=f"train[:{data_args.validation_split_percentage}%]",
|
423 |
+
cache_dir=model_args.cache_dir,
|
424 |
+
token=model_args.token,
|
425 |
+
**dataset_args,
|
426 |
+
)
|
427 |
+
raw_datasets["train"] = load_dataset(
|
428 |
+
extension,
|
429 |
+
data_files=data_files,
|
430 |
+
split=f"train[{data_args.validation_split_percentage}%:]",
|
431 |
+
cache_dir=model_args.cache_dir,
|
432 |
+
token=model_args.token,
|
433 |
+
**dataset_args,
|
434 |
+
)
|
435 |
+
|
436 |
+
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
437 |
+
# https://huggingface.co/docs/datasets/loading_datasets.
|
438 |
+
|
439 |
+
# Load pretrained model and tokenizer
|
440 |
+
#
|
441 |
+
# Distributed training:
|
442 |
+
# The .from_pretrained methods guarantee that only one local process can concurrently
|
443 |
+
# download model & vocab.
|
444 |
+
|
445 |
+
config_kwargs = {
|
446 |
+
"cache_dir": model_args.cache_dir,
|
447 |
+
"revision": model_args.model_revision,
|
448 |
+
"token": model_args.token,
|
449 |
+
"trust_remote_code": model_args.trust_remote_code,
|
450 |
+
}
|
451 |
+
if model_args.config_name:
|
452 |
+
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
|
453 |
+
elif model_args.model_name_or_path:
|
454 |
+
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
455 |
+
else:
|
456 |
+
config = CONFIG_MAPPING[model_args.model_type]()
|
457 |
+
logger.warning("You are instantiating a new config instance from scratch.")
|
458 |
+
if model_args.config_overrides is not None:
|
459 |
+
logger.info(f"Overriding config: {model_args.config_overrides}")
|
460 |
+
config.update_from_string(model_args.config_overrides)
|
461 |
+
logger.info(f"New config: {config}")
|
462 |
+
|
463 |
+
tokenizer_kwargs = {
|
464 |
+
"cache_dir": model_args.cache_dir,
|
465 |
+
"use_fast": model_args.use_fast_tokenizer,
|
466 |
+
"revision": model_args.model_revision,
|
467 |
+
"token": model_args.token,
|
468 |
+
"padding": 'max_length',
|
469 |
+
"trust_remote_code": model_args.trust_remote_code,
|
470 |
+
"model_max_length": config.max_position_embeddings,
|
471 |
+
"return_tensors":'pt'
|
472 |
+
}
|
473 |
+
if model_args.tokenizer_name:
|
474 |
+
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
|
475 |
+
elif model_args.model_name_or_path:
|
476 |
+
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
|
477 |
+
else:
|
478 |
+
raise ValueError(
|
479 |
+
"You are instantiating a new tokenizer from scratch. This is not supported by this script. "
|
480 |
+
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
481 |
+
)
|
482 |
+
if tokenizer.pad_token != tokenizer.unk_token:
|
483 |
+
tokenizer.pad_token = tokenizer.unk_token
|
484 |
+
|
485 |
+
if model_args.model_name_or_path:
|
486 |
+
torch_dtype = (
|
487 |
+
model_args.torch_dtype
|
488 |
+
if model_args.torch_dtype in ["auto", None]
|
489 |
+
else getattr(torch, model_args.torch_dtype)
|
490 |
+
)
|
491 |
+
model = AutoModelForCausalLM.from_pretrained(
|
492 |
+
model_args.model_name_or_path,
|
493 |
+
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
494 |
+
config=config,
|
495 |
+
cache_dir=model_args.cache_dir,
|
496 |
+
revision=model_args.model_revision,
|
497 |
+
token=model_args.token,
|
498 |
+
trust_remote_code=model_args.trust_remote_code,
|
499 |
+
torch_dtype=torch_dtype,
|
500 |
+
low_cpu_mem_usage=model_args.low_cpu_mem_usage,
|
501 |
+
)
|
502 |
+
else:
|
503 |
+
model = AutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code)
|
504 |
+
n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
|
505 |
+
logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
|
506 |
+
|
507 |
+
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
|
508 |
+
# on a small vocab and want a smaller embedding size, remove this test.
|
509 |
+
embedding_size = model.get_input_embeddings().weight.shape[0]
|
510 |
+
if len(tokenizer) > embedding_size:
|
511 |
+
model.resize_token_embeddings(len(tokenizer))
|
512 |
+
|
513 |
+
if "ShareGPT" == data_args.dataset_name_local:
|
514 |
+
raw_datasets_preprocessed = shareGPT_pipeline(tokenizer=tokenizer, raw_datasets=raw_datasets, overwrite_cache=data_args.overwrite_cache)
|
515 |
+
if "RedPajama" == data_args.dataset_name_local:
|
516 |
+
raw_datasets_preprocessed = raw_datasets
|
517 |
+
|
518 |
+
### HEREE
|
519 |
+
# Preprocessing the datasets.
|
520 |
+
# First we tokenize all the texts.
|
521 |
+
if training_args.do_train:
|
522 |
+
column_names = list(raw_datasets_preprocessed["train"].features)
|
523 |
+
else:
|
524 |
+
column_names = list(raw_datasets_preprocessed["validation"].features)
|
525 |
+
text_column_name = "text"
|
526 |
+
|
527 |
+
|
528 |
+
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
|
529 |
+
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
|
530 |
+
|
531 |
+
def tokenize_function(examples):
|
532 |
+
with CaptureLogger(tok_logger) as cl:
|
533 |
+
# print(tokenizer(examples[text_column_name]))
|
534 |
+
# output = tokenizer(examples[text_column_name])
|
535 |
+
output = tokenizer(
|
536 |
+
examples[text_column_name],
|
537 |
+
return_tensors="pt",
|
538 |
+
padding="max_length",
|
539 |
+
max_length=tokenizer.model_max_length,
|
540 |
+
truncation=True,
|
541 |
+
)
|
542 |
+
# output = input_ids.clone()
|
543 |
+
# clm input could be much much longer than block_size
|
544 |
+
if "Token indices sequence length is longer than the" in cl.out:
|
545 |
+
tok_logger.warning(
|
546 |
+
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
|
547 |
+
" before being passed to the model."
|
548 |
+
)
|
549 |
+
return output
|
550 |
+
|
551 |
+
with training_args.main_process_first(desc="dataset map tokenization"):
|
552 |
+
if not data_args.streaming:
|
553 |
+
tokenized_datasets = raw_datasets_preprocessed.map(
|
554 |
+
tokenize_function,
|
555 |
+
batched=True,
|
556 |
+
num_proc=data_args.preprocessing_num_workers,
|
557 |
+
remove_columns=column_names,
|
558 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
559 |
+
desc="Running tokenizer on dataset",
|
560 |
+
)
|
561 |
+
else:
|
562 |
+
tokenized_datasets = raw_datasets_preprocessed.map(
|
563 |
+
tokenize_function,
|
564 |
+
batched=True,
|
565 |
+
remove_columns=column_names,
|
566 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
567 |
+
)
|
568 |
+
if hasattr(config, "max_position_embeddings"):
|
569 |
+
max_pos_embeddings = config.max_position_embeddings
|
570 |
+
else:
|
571 |
+
# Define a default value if the attribute is missing in the config.
|
572 |
+
max_pos_embeddings = 1024
|
573 |
+
|
574 |
+
if data_args.block_size is None:
|
575 |
+
block_size = tokenizer.model_max_length
|
576 |
+
if block_size > max_pos_embeddings:
|
577 |
+
logger.warning(
|
578 |
+
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
|
579 |
+
f"Using block_size={min(1024, max_pos_embeddings)} instead. You can change that default value by passing --block_size xxx."
|
580 |
+
)
|
581 |
+
if max_pos_embeddings > 0:
|
582 |
+
block_size = min(1024, max_pos_embeddings)
|
583 |
+
else:
|
584 |
+
block_size = 1024
|
585 |
+
else:
|
586 |
+
if data_args.block_size > tokenizer.model_max_length:
|
587 |
+
logger.warning(
|
588 |
+
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model "
|
589 |
+
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
|
590 |
+
)
|
591 |
+
block_size = min(data_args.block_size, tokenizer.model_max_length)
|
592 |
+
|
593 |
+
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
|
594 |
+
def group_texts(examples):
|
595 |
+
# Concatenate all texts.
|
596 |
+
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
|
597 |
+
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
598 |
+
# We drop the small remainder, and if the total_length < block_size we exclude this batch and return an empty dict.
|
599 |
+
# We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
|
600 |
+
total_length = (total_length // block_size) * block_size
|
601 |
+
# Split by chunks of max_len.
|
602 |
+
result = {
|
603 |
+
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
604 |
+
for k, t in concatenated_examples.items()
|
605 |
+
}
|
606 |
+
result["labels"] = result["input_ids"].copy()
|
607 |
+
return result
|
608 |
+
|
609 |
+
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
|
610 |
+
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
|
611 |
+
# to preprocess.
|
612 |
+
#
|
613 |
+
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
|
614 |
+
# https://huggingface.co/docs/datasets/process#map
|
615 |
+
|
616 |
+
with training_args.main_process_first(desc="grouping texts together"):
|
617 |
+
if not data_args.streaming:
|
618 |
+
lm_datasets = tokenized_datasets.map(
|
619 |
+
group_texts,
|
620 |
+
batched=True,
|
621 |
+
num_proc=data_args.preprocessing_num_workers,
|
622 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
623 |
+
desc=f"Grouping texts in chunks of {block_size}",
|
624 |
+
)
|
625 |
+
else:
|
626 |
+
lm_datasets = tokenized_datasets.map(
|
627 |
+
group_texts,
|
628 |
+
batched=True,
|
629 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
630 |
+
)
|
631 |
+
|
632 |
+
if training_args.do_train:
|
633 |
+
if "train" not in tokenized_datasets:
|
634 |
+
raise ValueError("--do_train requires a train dataset")
|
635 |
+
train_dataset = lm_datasets["train"]
|
636 |
+
if data_args.max_train_samples is not None:
|
637 |
+
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
638 |
+
train_dataset = train_dataset.select(range(max_train_samples))
|
639 |
+
|
640 |
+
if training_args.do_eval:
|
641 |
+
if "validation" not in tokenized_datasets:
|
642 |
+
raise ValueError("--do_eval requires a validation dataset")
|
643 |
+
eval_dataset = lm_datasets["validation"]
|
644 |
+
if data_args.max_eval_samples is not None:
|
645 |
+
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
646 |
+
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
647 |
+
|
648 |
+
def preprocess_logits_for_metrics(logits, labels):
|
649 |
+
if isinstance(logits, tuple):
|
650 |
+
# Depending on the model and config, logits may contain extra tensors,
|
651 |
+
# like past_key_values, but logits always come first
|
652 |
+
logits = logits[0]
|
653 |
+
return logits.argmax(dim=-1)
|
654 |
+
|
655 |
+
|
656 |
+
def compute_metrics(eval_preds):
|
657 |
+
accuracy = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
|
658 |
+
perplexity = evaluate.load("perplexity", module_type="metric")
|
659 |
+
preds, labels = eval_preds
|
660 |
+
# preds have the same shape as the labels, after the argmax(-1) has been calculated
|
661 |
+
# by preprocess_logits_for_metrics but we need to shift the labels
|
662 |
+
labels = labels[:, 1:].reshape(-1)
|
663 |
+
preds = preds[:, :-1].reshape(-1)
|
664 |
+
accuracy = accuracy.compute(predictions=preds, references=labels)
|
665 |
+
# perplexity = perplexity.compute(predictions=preds, model_id='llama')
|
666 |
+
return accuracy
|
667 |
+
|
668 |
+
# Initialize the optimizer
|
669 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=training_args.learning_rate, weight_decay=training_args.weight_decay)
|
670 |
+
# Calculate the number of training steps
|
671 |
+
train_steps = (len(train_dataset) // (training_args.per_device_train_batch_size * training_args._n_gpu)) * training_args.num_train_epochs
|
672 |
+
|
673 |
+
# Initialize the scheduler
|
674 |
+
linear_scheduler = transformers.get_linear_schedule_with_warmup(
|
675 |
+
optimizer,
|
676 |
+
num_warmup_steps=train_steps*training_args.warmup_ratio,
|
677 |
+
num_training_steps=train_steps
|
678 |
+
)
|
679 |
+
|
680 |
+
# Initialize our Trainer
|
681 |
+
trainer = Trainer(
|
682 |
+
model=model,
|
683 |
+
args=training_args,
|
684 |
+
train_dataset=train_dataset if training_args.do_train else None,
|
685 |
+
eval_dataset=eval_dataset if training_args.do_eval else None,
|
686 |
+
tokenizer=tokenizer,
|
687 |
+
optimizers=(optimizer, linear_scheduler),
|
688 |
+
# Data collator will default to DataCollatorWithPadding, so we change it.
|
689 |
+
data_collator=default_data_collator,
|
690 |
+
compute_metrics=compute_metrics if training_args.do_eval else None,
|
691 |
+
preprocess_logits_for_metrics=preprocess_logits_for_metrics
|
692 |
+
if training_args.do_eval else None,
|
693 |
+
)
|
694 |
+
|
695 |
+
# Training
|
696 |
+
if training_args.do_train:
|
697 |
+
checkpoint = None
|
698 |
+
if training_args.resume_from_checkpoint is not None:
|
699 |
+
checkpoint = training_args.resume_from_checkpoint
|
700 |
+
elif last_checkpoint is not None:
|
701 |
+
checkpoint = last_checkpoint
|
702 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
703 |
+
trainer.save_model() # Saves the tokenizer too for easy upload
|
704 |
+
|
705 |
+
metrics = train_result.metrics
|
706 |
+
|
707 |
+
max_train_samples = (
|
708 |
+
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
709 |
+
)
|
710 |
+
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
711 |
+
|
712 |
+
trainer.log_metrics("train", metrics)
|
713 |
+
trainer.save_metrics("train", metrics)
|
714 |
+
trainer.save_state()
|
715 |
+
try:
|
716 |
+
torch.save([vars(a) for a in [training_args, data_args, model_args]], os.path.join(training_args.output_dir, "args.bin"))
|
717 |
+
except:
|
718 |
+
logger.info("Failed to save arguments")
|
719 |
+
|
720 |
+
# Evaluation
|
721 |
+
if training_args.do_eval:
|
722 |
+
logger.info("*** Evaluate ***")
|
723 |
+
|
724 |
+
metrics = trainer.evaluate()
|
725 |
+
|
726 |
+
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
727 |
+
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
728 |
+
try:
|
729 |
+
perplexity = math.exp(metrics["eval_loss"])
|
730 |
+
except OverflowError:
|
731 |
+
perplexity = float("inf")
|
732 |
+
metrics["perplexity"] = perplexity
|
733 |
+
|
734 |
+
trainer.log_metrics("eval", metrics)
|
735 |
+
trainer.save_metrics("eval", metrics)
|
736 |
+
|
737 |
+
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
|
738 |
+
if data_args.dataset_name is not None:
|
739 |
+
kwargs["dataset_tags"] = data_args.dataset_name
|
740 |
+
if data_args.dataset_config_name is not None:
|
741 |
+
kwargs["dataset_args"] = data_args.dataset_config_name
|
742 |
+
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
|
743 |
+
else:
|
744 |
+
kwargs["dataset"] = data_args.dataset_name
|
745 |
+
elif data_args.dataset_name_hub is not None:
|
746 |
+
kwargs["dataset"] = data_args.dataset_name_hub
|
747 |
+
|
748 |
+
if training_args.push_to_hub:
|
749 |
+
trainer.push_to_hub(**kwargs)
|
750 |
+
else:
|
751 |
+
trainer.create_model_card(**kwargs)
|
752 |
+
|
753 |
+
if __name__ == "__main__":
|
754 |
+
main()
|
experiment_code/submit_job.sh
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH -p g48
|
3 |
+
#SBATCH --job-name=myjob_shareGPT
|
4 |
+
#SBATCH --qos=high
|
5 |
+
#SBATCH --nodes=1 # Number of nodes
|
6 |
+
#SBATCH --ntasks=1 # Number of tasks (one for each script)
|
7 |
+
#SBATCH --cpus-per-task=60
|
8 |
+
#SBATCH --gres=gpu:6
|
9 |
+
#SBATCH --array=1-2 # Array range
|
10 |
+
# #SBATCH --output=./slurm_outputs/run_clm_job_%A_task_%a.out # Standard output
|
11 |
+
#SBATCH --output=/dev/null # Discard standard output # Because we write to the log.txt file
|
12 |
+
|
13 |
+
# # Get the current date and time
|
14 |
+
current_time=$(date +"%d-%m_%H-%M")
|
15 |
+
OUTPUT_DIR="./training_outputs_job_${SLURM_ARRAY_JOB_ID}_${SLURM_ARRAY_TASK_ID}_${current_time}"
|
16 |
+
|
17 |
+
while test $# -gt 0; do
|
18 |
+
echo $1
|
19 |
+
case "$1" in
|
20 |
+
--output_dir)
|
21 |
+
shift
|
22 |
+
OUTPUT_DIR=$1
|
23 |
+
shift
|
24 |
+
;;
|
25 |
+
esac
|
26 |
+
done
|
27 |
+
|
28 |
+
mkdir_is_exists() {
|
29 |
+
if [ -d "$1" ]; then
|
30 |
+
echo "Directory '$1' already exists."
|
31 |
+
else
|
32 |
+
mkdir -p "$1"
|
33 |
+
echo "Directory '$1' created."
|
34 |
+
fi
|
35 |
+
}
|
36 |
+
|
37 |
+
|
38 |
+
mkdir_is_exists $OUTPUT_DIR
|
39 |
+
mkdir_is_exists $OUTPUT_DIR/experiment_code
|
40 |
+
git log -n 1 > $OUTPUT_DIR/commit.txt
|
41 |
+
pip freeze > $OUTPUT_DIR/pip_freeze.txt
|
42 |
+
echo $0 $ARGS $current_time > $OUTPUT_DIR/cmd.txt
|
43 |
+
cp -r ./run_clm.py $OUTPUT_DIR/experiment_code
|
44 |
+
cp -r ./prepare_sharegpt.py $OUTPUT_DIR/experiment_code
|
45 |
+
cp -r config $OUTPUT_DIR/experiment_code
|
46 |
+
cp -r ./submit_job.sh $OUTPUT_DIR/experiment_code
|
47 |
+
cp -r ./requirements.txt $OUTPUT_DIR/experiment_code
|
48 |
+
|
49 |
+
# Define the Python scripts and their corresponding input files
|
50 |
+
declare -A scripts_and_inputs=(
|
51 |
+
["1"]="./config/config1.yaml"
|
52 |
+
["2"]="./config/config_redpajama.yaml"
|
53 |
+
# ["3"]="./config/config1.yaml"
|
54 |
+
# ["4"]="./config/config1.yaml"
|
55 |
+
# ["5"]="./config/config1.yaml"
|
56 |
+
# ["6"]="./config/config1.yaml"
|
57 |
+
# ["7"]="./config/config1.yaml"
|
58 |
+
# ["8"]="./config/config1.yaml"
|
59 |
+
# ["9"]="./config/config1.yaml"
|
60 |
+
# ["10"]="./config/config1.yaml"
|
61 |
+
# ["11"]="./config/config1.yaml"
|
62 |
+
# ["12"]="./config/config1.yaml"
|
63 |
+
# ["13"]="./config/config1.yaml"
|
64 |
+
# ["14"]="./config/config1.yaml"
|
65 |
+
# ["15"]="./config/config1.yaml"
|
66 |
+
# ["16"]="./config/config1.yaml"
|
67 |
+
# ["17"]="./config/config1.yaml"
|
68 |
+
# ["18"]="./config/config1.yaml"
|
69 |
+
# ["19"]="./config/config1.yaml"
|
70 |
+
# ["20"]="./config/config1.yaml"
|
71 |
+
)
|
72 |
+
|
73 |
+
# Launch each script with its corresponding input file as a separate task
|
74 |
+
echo "Starting job array task: $SLURM_ARRAY_TASK_ID"
|
75 |
+
|
76 |
+
INPUT_DIR="${scripts_and_inputs[$SLURM_ARRAY_TASK_ID]}"
|
77 |
+
export DEFAULT_CONFIG_FILE="./config/config1.yaml"
|
78 |
+
srun --exclusive python run_clm.py --output_dir $OUTPUT_DIR --logging_dir $OUTPUT_DIR --config_file $INPUT_DIR 2>&1 | tee $OUTPUT_DIR/log.txt
|
79 |
+
|
80 |
+
|
81 |
+
# Wait for all background jobs to complete
|
82 |
+
wait
|
83 |
+
|
84 |
+
# Print a message indicating completion
|
85 |
+
echo "All Python scripts have been executed."
|
86 |
+
|
87 |
+
|
88 |
+
# mv ./slurm_outputs/run_clm_job_$SLURM_ARRAY_JOB_ID*$SLURM_ARRAY_TASK_ID* "$output_dir/"
|
89 |
+
|
90 |
+
|
91 |
+
# python -m torch.distributed.launch ~/target_draft_coupling_code/target_draft_training/run_clm.py --multirun task=1,2
|
log.txt
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
0%| | 0/11346 [00:00<?, ?it/s]/home/dshteyma/miniconda3/lib/python3.9/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.
|
|
|
|
|
1 |
0%| | 1/11346 [00:04<15:05:26, 4.79s/it]
|
2 |
0%| | 2/11346 [00:06<9:21:06, 2.97s/it]
|
3 |
0%| | 3/11346 [00:08<7:30:15, 2.38s/it]
|
4 |
0%| | 4/11346 [00:09<6:37:25, 2.10s/it]
|
5 |
0%| | 5/11346 [00:11<6:07:24, 1.94s/it]
|
6 |
0%| | 6/11346 [00:13<5:48:09, 1.84s/it]
|
7 |
0%| | 7/11346 [00:14<5:35:53, 1.78s/it]
|
8 |
0%| | 8/11346 [00:16<5:30:15, 1.75s/it]
|
9 |
0%| | 9/11346 [00:18<5:24:26, 1.72s/it]
|
10 |
0%| | 10/11346 [00:19<5:20:12, 1.69s/it]
|
11 |
0%| | 11/11346 [00:21<5:19:03, 1.69s/it]
|
12 |
0%| | 12/11346 [00:23<5:16:19, 1.67s/it]
|
13 |
0%| | 13/11346 [00:24<5:14:47, 1.67s/it]
|
14 |
0%| | 14/11346 [00:26<5:15:45, 1.67s/it]
|
15 |
0%| | 15/11346 [00:28<5:15:55, 1.67s/it]
|
16 |
0%| | 16/11346 [00:29<5:16:01, 1.67s/it]
|
17 |
0%| | 17/11346 [00:31<5:14:59, 1.67s/it]
|
18 |
0%| | 18/11346 [00:33<5:13:43, 1.66s/it]
|
19 |
0%| | 19/11346 [00:34<5:12:42, 1.66s/it]
|
20 |
0%| | 20/11346 [00:36<5:11:52, 1.65s/it]
|
21 |
0%| | 21/11346 [00:37<5:11:11, 1.65s/it]
|
22 |
0%| | 22/11346 [00:39<5:10:54, 1.65s/it]
|
23 |
0%| | 23/11346 [00:41<5:10:37, 1.65s/it]
|
24 |
0%| | 24/11346 [00:42<5:10:31, 1.65s/it]
|
25 |
0%| | 25/11346 [00:44<5:10:24, 1.65s/it]
|
26 |
0%| | 26/11346 [00:46<5:10:12, 1.64s/it]
|
27 |
0%| | 27/11346 [00:47<5:11:36, 1.65s/it]
|
28 |
0%| | 28/11346 [00:49<5:11:16, 1.65s/it]
|
29 |
0%| | 29/11346 [00:51<5:10:53, 1.65s/it]
|
30 |
0%| | 30/11346 [00:52<5:10:39, 1.65s/it]
|
31 |
0%| | 31/11346 [00:54<5:10:26, 1.65s/it]
|
32 |
0%| | 32/11346 [00:56<5:10:17, 1.65s/it]
|
33 |
0%| | 33/11346 [00:57<5:10:09, 1.64s/it]
|
34 |
0%| | 34/11346 [00:59<5:10:07, 1.64s/it]
|
35 |
0%| | 35/11346 [01:01<5:09:56, 1.64s/it]
|
36 |
0%| | 36/11346 [01:02<5:09:53, 1.64s/it]
|
37 |
0%| | 37/11346 [01:04<5:09:51, 1.64s/it]
|
38 |
0%| | 38/11346 [01:05<5:09:44, 1.64s/it]
|
39 |
0%| | 39/11346 [01:07<5:09:40, 1.64s/it]
|
40 |
0%| | 40/11346 [01:09<5:09:35, 1.64s/it]
|
41 |
0%| | 41/11346 [01:10<5:09:32, 1.64s/it]
|
42 |
0%| | 42/11346 [01:12<5:09:25, 1.64s/it]
|
43 |
0%| | 43/11346 [01:14<5:09:27, 1.64s/it]
|
44 |
0%| | 44/11346 [01:15<5:09:44, 1.64s/it]
|
45 |
0%| | 45/11346 [01:17<5:09:45, 1.64s/it]
|
46 |
0%| | 46/11346 [01:19<5:09:40, 1.64s/it]
|
47 |
0%| | 47/11346 [01:20<5:09:36, 1.64s/it]
|
48 |
0%| | 48/11346 [01:22<5:09:32, 1.64s/it]
|
49 |
0%| | 49/11346 [01:24<5:09:30, 1.64s/it]
|
50 |
0%| | 50/11346 [01:25<5:09:30, 1.64s/it]
|
51 |
0%| | 51/11346 [01:27<5:09:30, 1.64s/it]
|
52 |
0%| | 52/11346 [01:28<5:09:24, 1.64s/it]
|
53 |
0%| | 53/11346 [01:30<5:09:22, 1.64s/it]
|
54 |
0%| | 54/11346 [01:32<5:09:22, 1.64s/it]
|
55 |
0%| | 55/11346 [01:33<5:09:26, 1.64s/it]
|
56 |
0%| | 56/11346 [01:35<5:09:35, 1.65s/it]
|
57 |
1%| | 57/11346 [01:37<5:09:41, 1.65s/it]
|
58 |
1%| | 58/11346 [01:38<5:09:36, 1.65s/it]
|
59 |
1%| | 59/11346 [01:40<5:09:28, 1.65s/it]
|
60 |
1%| | 60/11346 [01:42<5:09:21, 1.64s/it]
|
61 |
1%| | 61/11346 [01:43<5:09:45, 1.65s/it]
|
62 |
1%| | 62/11346 [01:45<5:09:30, 1.65s/it]
|
63 |
1%| | 63/11346 [01:47<5:09:21, 1.65s/it]
|
64 |
1%| | 64/11346 [01:48<5:09:16, 1.64s/it]
|
65 |
1%| | 65/11346 [01:50<5:09:11, 1.64s/it]
|
66 |
1%| | 66/11346 [01:52<5:09:06, 1.64s/it]
|
67 |
1%| | 67/11346 [01:53<5:09:05, 1.64s/it]
|
68 |
1%| | 68/11346 [01:55<5:10:50, 1.65s/it]
|
69 |
1%| | 69/11346 [01:57<5:11:57, 1.66s/it]
|
70 |
1%| | 70/11346 [01:58<5:11:27, 1.66s/it]
|
71 |
1%| | 71/11346 [02:00<5:10:43, 1.65s/it]
|
72 |
1%| | 72/11346 [02:01<5:10:09, 1.65s/it]
|
73 |
1%| | 73/11346 [02:03<5:09:46, 1.65s/it]
|
74 |
1%| | 74/11346 [02:05<5:09:27, 1.65s/it]
|
75 |
1%| | 75/11346 [02:06<5:09:07, 1.65s/it]
|
76 |
1%| | 76/11346 [02:08<5:08:57, 1.64s/it]
|
77 |
1%| | 77/11346 [02:10<5:08:54, 1.64s/it]
|
78 |
1%| | 78/11346 [02:11<5:08:52, 1.64s/it]
|
79 |
1%| | 79/11346 [02:13<5:08:52, 1.64s/it]
|
80 |
1%| | 80/11346 [02:15<5:08:52, 1.64s/it]
|
81 |
1%| | 81/11346 [02:16<5:08:47, 1.64s/it]
|
82 |
1%| | 82/11346 [02:18<5:08:40, 1.64s/it]
|
83 |
1%| | 83/11346 [02:20<5:08:40, 1.64s/it]
|
84 |
1%| | 84/11346 [02:21<5:08:33, 1.64s/it]
|
85 |
1%| | 85/11346 [02:23<5:08:32, 1.64s/it]
|
86 |
1%| | 86/11346 [02:25<5:12:04, 1.66s/it]
|
87 |
1%| | 87/11346 [02:26<5:13:39, 1.67s/it]
|
88 |
1%| | 88/11346 [02:28<5:15:04, 1.68s/it]
|
89 |
1%| | 89/11346 [02:30<5:14:52, 1.68s/it]
|
90 |
1%| | 90/11346 [02:31<5:15:18, 1.68s/it]
|
91 |
1%| | 91/11346 [02:33<5:15:25, 1.68s/it]
|
92 |
1%| | 92/11346 [02:35<5:16:00, 1.68s/it]
|
93 |
1%| | 93/11346 [02:36<5:16:22, 1.69s/it]
|
94 |
1%| | 94/11346 [02:38<5:15:59, 1.68s/it]
|
95 |
1%| | 95/11346 [02:40<5:16:37, 1.69s/it]
|
96 |
1%| | 96/11346 [02:41<5:16:52, 1.69s/it]
|
97 |
1%| | 97/11346 [02:43<5:16:53, 1.69s/it]
|
98 |
1%| | 98/11346 [02:45<5:16:50, 1.69s/it]
|
99 |
1%| | 99/11346 [02:46<5:16:42, 1.69s/it]
|
100 |
1%| | 100/11346 [02:48<5:16:32, 1.69s/it]
|
101 |
1%| | 101/11346 [02:50<5:16:02, 1.69s/it]
|
102 |
1%| | 102/11346 [02:52<5:16:21, 1.69s/it]
|
103 |
1%| | 103/11346 [02:53<5:16:22, 1.69s/it]
|
104 |
1%| | 104/11346 [02:55<5:16:56, 1.69s/it]
|
105 |
1%| | 105/11346 [02:57<5:17:05, 1.69s/it]
|
106 |
1%| | 106/11346 [02:58<5:16:58, 1.69s/it]
|
107 |
1%| | 107/11346 [03:00<5:17:08, 1.69s/it]
|
108 |
1%| | 108/11346 [03:02<5:17:07, 1.69s/it]
|
109 |
1%| | 109/11346 [03:03<5:16:39, 1.69s/it]
|
110 |
1%| | 110/11346 [03:05<5:16:25, 1.69s/it]
|
111 |
1%| | 111/11346 [03:07<5:16:27, 1.69s/it]
|
112 |
1%| | 112/11346 [03:08<5:16:08, 1.69s/it]
|
113 |
1%| | 113/11346 [03:10<5:15:47, 1.69s/it]
|
114 |
1%| | 114/11346 [03:12<5:15:59, 1.69s/it]
|
115 |
1%| | 115/11346 [03:14<5:16:09, 1.69s/it]
|
116 |
1%| | 116/11346 [03:15<5:15:54, 1.69s/it]
|
117 |
1%| | 117/11346 [03:17<5:16:14, 1.69s/it]
|
118 |
1%| | 118/11346 [03:19<5:16:21, 1.69s/it]
|
119 |
1%| | 119/11346 [03:20<5:16:37, 1.69s/it]
|
120 |
1%| | 120/11346 [03:22<5:15:42, 1.69s/it]
|
121 |
1%| | 121/11346 [03:24<5:15:53, 1.69s/it]
|
122 |
1%| | 122/11346 [03:25<5:15:52, 1.69s/it]
|
123 |
1%| | 123/11346 [03:27<5:15:37, 1.69s/it]
|
124 |
1%| | 124/11346 [03:29<5:15:21, 1.69s/it]
|
125 |
1%| | 125/11346 [03:30<5:15:20, 1.69s/it]
|
126 |
1%| | 126/11346 [03:32<5:15:08, 1.69s/it]
|
127 |
1%| | 127/11346 [03:34<5:15:16, 1.69s/it]
|
128 |
1%| | 128/11346 [03:35<5:15:28, 1.69s/it]
|
129 |
1%| | 129/11346 [03:37<5:15:06, 1.69s/it]
|
130 |
1%| | 130/11346 [03:39<5:15:41, 1.69s/it]
|
131 |
1%| | 131/11346 [03:41<5:15:22, 1.69s/it]
|
132 |
1%| | 132/11346 [03:42<5:15:06, 1.69s/it]
|
133 |
1%| | 133/11346 [03:44<5:15:00, 1.69s/it]
|
134 |
1%| | 134/11346 [03:46<5:15:08, 1.69s/it]
|
135 |
1%| | 135/11346 [03:47<5:15:12, 1.69s/it]
|
136 |
1%| | 136/11346 [03:49<5:14:45, 1.68s/it]
|
137 |
1%| | 137/11346 [03:51<5:13:39, 1.68s/it]
|
138 |
1%| | 138/11346 [03:52<5:13:47, 1.68s/it]
|
139 |
1%| | 139/11346 [03:54<5:13:33, 1.68s/it]
|
140 |
1%| | 140/11346 [03:56<5:13:47, 1.68s/it]
|
141 |
1%| | 141/11346 [03:57<5:13:56, 1.68s/it]
|
142 |
1%|▏ | 142/11346 [03:59<5:14:16, 1.68s/it]
|
143 |
1%|▏ | 143/11346 [04:01<5:13:54, 1.68s/it]
|
144 |
1%|▏ | 144/11346 [04:02<5:13:57, 1.68s/it]
|
145 |
1%|▏ | 145/11346 [04:04<5:13:51, 1.68s/it]
|
146 |
1%|▏ | 146/11346 [04:06<5:14:21, 1.68s/it]
|
147 |
1%|▏ | 147/11346 [04:07<5:15:46, 1.69s/it]
|
148 |
1%|▏ | 148/11346 [04:09<5:16:13, 1.69s/it]
|
149 |
1%|▏ | 149/11346 [04:11<5:15:22, 1.69s/it]
|
150 |
1%|▏ | 150/11346 [04:13<5:16:59, 1.70s/it]
|
151 |
1%|▏ | 151/11346 [04:14<5:17:05, 1.70s/it]
|
152 |
1%|▏ | 152/11346 [04:16<5:16:55, 1.70s/it]
|
153 |
1%|▏ | 153/11346 [04:18<5:17:29, 1.70s/it]
|
154 |
1%|▏ | 154/11346 [04:19<5:17:43, 1.70s/it]
|
155 |
1%|▏ | 155/11346 [04:21<5:16:45, 1.70s/it]
|
156 |
1%|▏ | 156/11346 [04:23<5:17:07, 1.70s/it]
|
157 |
1%|▏ | 157/11346 [04:24<5:17:52, 1.70s/it]
|
158 |
1%|▏ | 158/11346 [04:26<5:16:59, 1.70s/it]
|
159 |
1%|▏ | 159/11346 [04:28<5:17:13, 1.70s/it]
|
160 |
1%|▏ | 160/11346 [04:30<5:17:42, 1.70s/it]
|
161 |
1%|▏ | 161/11346 [04:31<5:17:20, 1.70s/it]
|
162 |
1%|▏ | 162/11346 [04:33<5:16:54, 1.70s/it]
|
163 |
1%|▏ | 163/11346 [04:35<5:15:58, 1.70s/it]
|
164 |
1%|▏ | 164/11346 [04:36<5:16:33, 1.70s/it]
|
165 |
1%|▏ | 165/11346 [04:38<5:16:46, 1.70s/it]
|
166 |
1%|▏ | 166/11346 [04:40<5:16:18, 1.70s/it]
|
167 |
1%|▏ | 167/11346 [04:41<5:15:53, 1.70s/it]
|
168 |
1%|▏ | 168/11346 [04:43<5:15:33, 1.69s/it]
|
169 |
1%|▏ | 169/11346 [04:45<5:16:19, 1.70s/it]
|
170 |
1%|▏ | 170/11346 [04:47<5:15:30, 1.69s/it]
|
171 |
2%|▏ | 171/11346 [04:48<5:15:01, 1.69s/it]
|
172 |
2%|▏ | 172/11346 [04:50<5:15:21, 1.69s/it]
|
173 |
2%|▏ | 173/11346 [04:52<5:14:48, 1.69s/it]
|
174 |
2%|▏ | 174/11346 [04:53<5:16:03, 1.70s/it]
|
175 |
2%|▏ | 175/11346 [04:55<5:15:36, 1.70s/it]
|
176 |
2%|▏ | 176/11346 [04:57<5:15:10, 1.69s/it]
|
177 |
2%|▏ | 177/11346 [04:58<5:15:37, 1.70s/it]
|
178 |
2%|▏ | 178/11346 [05:00<5:15:06, 1.69s/it]
|
179 |
2%|▏ | 179/11346 [05:02<5:14:42, 1.69s/it]
|
180 |
2%|▏ | 180/11346 [05:03<5:15:07, 1.69s/it]
|
181 |
2%|▏ | 181/11346 [05:05<5:15:02, 1.69s/it]
|
182 |
2%|▏ | 182/11346 [05:07<5:14:59, 1.69s/it]
|
183 |
2%|▏ | 183/11346 [05:09<5:14:40, 1.69s/it]
|
184 |
2%|▏ | 184/11346 [05:10<5:15:53, 1.70s/it]
|
185 |
2%|▏ | 185/11346 [05:12<5:15:11, 1.69s/it]
|
186 |
2%|▏ | 186/11346 [05:14<5:14:53, 1.69s/it]
|
187 |
2%|▏ | 187/11346 [05:15<5:15:43, 1.70s/it]
|
188 |
2%|▏ | 188/11346 [05:17<5:15:29, 1.70s/it]
|
189 |
2%|▏ | 189/11346 [05:19<5:15:17, 1.70s/it]
|
190 |
2%|▏ | 190/11346 [05:20<5:15:03, 1.69s/it]
|
191 |
2%|▏ | 191/11346 [05:22<5:14:08, 1.69s/it]
|
192 |
2%|▏ | 192/11346 [05:24<5:14:18, 1.69s/it]
|
193 |
2%|▏ | 193/11346 [05:25<5:14:10, 1.69s/it]
|
194 |
2%|▏ | 194/11346 [05:27<5:13:51, 1.69s/it]
|
195 |
2%|▏ | 195/11346 [05:29<5:13:31, 1.69s/it]
|
196 |
2%|▏ | 196/11346 [05:31<5:14:23, 1.69s/it]
|
197 |
2%|▏ | 197/11346 [05:32<5:15:01, 1.70s/it]
|
198 |
2%|▏ | 198/11346 [05:34<5:15:03, 1.70s/it]
|
199 |
2%|▏ | 199/11346 [05:36<5:14:37, 1.69s/it]
|
200 |
2%|▏ | 200/11346 [05:37<5:14:54, 1.70s/it]
|
201 |
2%|▏ | 201/11346 [05:39<5:14:20, 1.69s/it]
|
202 |
2%|▏ | 202/11346 [05:41<5:14:27, 1.69s/it]
|
203 |
2%|▏ | 203/11346 [05:42<5:13:49, 1.69s/it]
|
204 |
2%|▏ | 204/11346 [05:44<5:13:47, 1.69s/it]
|
205 |
2%|▏ | 205/11346 [05:46<5:13:39, 1.69s/it]
|
206 |
2%|▏ | 206/11346 [05:47<5:13:03, 1.69s/it]
|
207 |
2%|▏ | 207/11346 [05:49<5:13:46, 1.69s/it]
|
208 |
2%|▏ | 208/11346 [05:51<5:13:31, 1.69s/it]
|
209 |
2%|▏ | 209/11346 [05:53<5:13:34, 1.69s/it]
|
210 |
2%|▏ | 210/11346 [05:54<5:13:27, 1.69s/it]
|
211 |
2%|▏ | 211/11346 [05:56<5:12:29, 1.68s/it]
|
212 |
2%|▏ | 212/11346 [05:58<5:13:18, 1.69s/it]
|
213 |
2%|▏ | 213/11346 [05:59<5:12:47, 1.69s/it]
|
214 |
2%|▏ | 214/11346 [06:01<5:12:54, 1.69s/it]
|
215 |
2%|▏ | 215/11346 [06:03<5:12:27, 1.68s/it]
|
216 |
2%|▏ | 216/11346 [06:04<5:13:25, 1.69s/it]
|
217 |
2%|▏ | 217/11346 [06:06<5:13:28, 1.69s/it]
|
218 |
2%|▏ | 218/11346 [06:08<5:13:45, 1.69s/it]
|
219 |
2%|▏ | 219/11346 [06:09<5:12:47, 1.69s/it]
|
220 |
2%|▏ | 220/11346 [06:11<5:13:05, 1.69s/it]
|
221 |
2%|▏ | 221/11346 [06:13<5:13:41, 1.69s/it]
|
222 |
2%|▏ | 222/11346 [06:14<5:13:08, 1.69s/it]
|
223 |
2%|▏ | 223/11346 [06:16<5:12:37, 1.69s/it]
|
224 |
2%|▏ | 224/11346 [06:18<5:12:56, 1.69s/it]
|
225 |
2%|▏ | 225/11346 [06:20<5:12:02, 1.68s/it]
|
226 |
2%|▏ | 226/11346 [06:21<5:12:05, 1.68s/it]
|
227 |
2%|▏ | 227/11346 [06:23<5:13:03, 1.69s/it]
|
228 |
2%|▏ | 228/11346 [06:25<5:12:56, 1.69s/it]
|
229 |
2%|▏ | 229/11346 [06:26<5:12:24, 1.69s/it]
|
230 |
2%|▏ | 230/11346 [06:28<5:12:29, 1.69s/it]
|
231 |
2%|▏ | 231/11346 [06:30<5:12:28, 1.69s/it]
|
232 |
2%|▏ | 232/11346 [06:31<5:12:35, 1.69s/it]
|
233 |
2%|▏ | 233/11346 [06:33<5:13:07, 1.69s/it]
|
234 |
2%|▏ | 234/11346 [06:35<5:12:34, 1.69s/it]
|
235 |
2%|▏ | 235/11346 [06:36<5:12:19, 1.69s/it]
|
236 |
2%|▏ | 236/11346 [06:38<5:12:52, 1.69s/it]
|
237 |
2%|▏ | 237/11346 [06:40<5:12:53, 1.69s/it]
|
238 |
2%|▏ | 238/11346 [06:41<5:13:25, 1.69s/it]
|
239 |
2%|▏ | 239/11346 [06:43<5:13:20, 1.69s/it]
|
240 |
2%|▏ | 240/11346 [06:45<5:11:49, 1.68s/it]
|
241 |
2%|▏ | 241/11346 [06:47<5:12:48, 1.69s/it]
|
242 |
2%|▏ | 242/11346 [06:48<5:12:47, 1.69s/it]
|
243 |
2%|▏ | 243/11346 [06:50<5:13:03, 1.69s/it]
|
244 |
2%|▏ | 244/11346 [06:52<5:13:03, 1.69s/it]
|
245 |
2%|▏ | 245/11346 [06:53<5:12:45, 1.69s/it]
|
246 |
2%|▏ | 246/11346 [06:55<5:12:53, 1.69s/it]
|
247 |
2%|▏ | 247/11346 [06:57<5:12:42, 1.69s/it]
|
248 |
2%|▏ | 248/11346 [06:58<5:11:35, 1.68s/it]
|
249 |
2%|▏ | 249/11346 [07:00<5:11:17, 1.68s/it]
|
250 |
2%|▏ | 250/11346 [07:02<5:11:09, 1.68s/it]
|
251 |
2%|▏ | 251/11346 [07:03<5:11:38, 1.69s/it]
|
252 |
2%|▏ | 252/11346 [07:05<5:11:13, 1.68s/it]
|
253 |
2%|▏ | 253/11346 [07:07<5:11:38, 1.69s/it]
|
254 |
2%|▏ | 254/11346 [07:08<5:10:30, 1.68s/it]
|
255 |
2%|▏ | 255/11346 [07:10<5:10:14, 1.68s/it]
|
256 |
2%|▏ | 256/11346 [07:12<5:10:15, 1.68s/it]
|
257 |
2%|▏ | 257/11346 [07:13<5:09:47, 1.68s/it]
|
258 |
2%|▏ | 258/11346 [07:15<5:10:30, 1.68s/it]
|
259 |
2%|▏ | 259/11346 [07:17<5:11:11, 1.68s/it]
|
260 |
2%|▏ | 260/11346 [07:19<5:10:54, 1.68s/it]
|
261 |
2%|▏ | 261/11346 [07:20<5:10:47, 1.68s/it]
|
262 |
2%|▏ | 262/11346 [07:22<5:10:19, 1.68s/it]
|
263 |
2%|▏ | 263/11346 [07:24<5:10:42, 1.68s/it]
|
264 |
2%|▏ | 264/11346 [07:25<5:10:37, 1.68s/it]
|
265 |
2%|▏ | 265/11346 [07:27<5:10:42, 1.68s/it]
|
266 |
2%|▏ | 266/11346 [07:29<5:11:00, 1.68s/it]
|
267 |
2%|▏ | 267/11346 [07:30<5:11:00, 1.68s/it]
|
268 |
2%|▏ | 268/11346 [07:32<5:11:15, 1.69s/it]
|
269 |
2%|▏ | 269/11346 [07:34<5:10:59, 1.68s/it]
|
270 |
2%|▏ | 270/11346 [07:35<5:11:20, 1.69s/it]
|
271 |
2%|▏ | 271/11346 [07:37<5:11:27, 1.69s/it]
|
272 |
2%|▏ | 272/11346 [07:39<5:11:38, 1.69s/it]
|
273 |
2%|▏ | 273/11346 [07:40<5:11:37, 1.69s/it]
|
274 |
2%|▏ | 274/11346 [07:42<5:11:42, 1.69s/it]
|
275 |
2%|▏ | 275/11346 [07:44<5:11:02, 1.69s/it]
|
276 |
2%|▏ | 276/11346 [07:46<5:10:47, 1.68s/it]
|
277 |
2%|▏ | 277/11346 [07:47<5:11:04, 1.69s/it]
|
278 |
2%|▏ | 278/11346 [07:49<5:11:01, 1.69s/it]
|
279 |
2%|▏ | 279/11346 [07:51<5:10:57, 1.69s/it]
|
280 |
2%|▏ | 280/11346 [07:52<5:10:04, 1.68s/it]
|
281 |
2%|▏ | 281/11346 [07:54<5:09:03, 1.68s/it]
|
282 |
2%|▏ | 282/11346 [07:56<5:10:14, 1.68s/it]
|
283 |
2%|▏ | 283/11346 [07:57<5:10:30, 1.68s/it]
|
284 |
3%|▎ | 284/11346 [07:59<5:09:50, 1.68s/it]
|
285 |
3%|▎ | 285/11346 [08:01<5:09:45, 1.68s/it]
|
286 |
3%|▎ | 286/11346 [08:02<5:11:25, 1.69s/it]
|
287 |
3%|▎ | 287/11346 [08:04<5:11:07, 1.69s/it]
|
288 |
3%|▎ | 288/11346 [08:06<5:10:45, 1.69s/it]
|
289 |
3%|▎ | 289/11346 [08:07<5:10:22, 1.68s/it]
|
290 |
3%|▎ | 290/11346 [08:09<5:09:34, 1.68s/it]
|
291 |
3%|▎ | 291/11346 [08:11<5:09:15, 1.68s/it]
|
292 |
3%|▎ | 292/11346 [08:12<5:08:31, 1.67s/it]
|
293 |
3%|▎ | 293/11346 [08:14<5:09:04, 1.68s/it]
|
294 |
3%|▎ | 294/11346 [08:16<5:09:19, 1.68s/it]
|
295 |
3%|▎ | 295/11346 [08:17<5:09:08, 1.68s/it]
|
296 |
3%|▎ | 296/11346 [08:19<5:09:44, 1.68s/it]
|
297 |
3%|▎ | 297/11346 [08:21<5:10:02, 1.68s/it]
|
298 |
3%|▎ | 298/11346 [08:23<5:10:14, 1.68s/it]
|
299 |
3%|▎ | 299/11346 [08:24<5:10:42, 1.69s/it]
|
300 |
3%|▎ | 300/11346 [08:26<5:10:02, 1.68s/it]
|
301 |
3%|▎ | 301/11346 [08:28<5:09:29, 1.68s/it]
|
302 |
3%|▎ | 302/11346 [08:29<5:09:15, 1.68s/it]
|
303 |
3%|▎ | 303/11346 [08:31<5:09:55, 1.68s/it]
|
304 |
3%|▎ | 304/11346 [08:33<5:09:50, 1.68s/it]
|
305 |
3%|▎ | 305/11346 [08:34<5:08:58, 1.68s/it]
|
306 |
3%|▎ | 306/11346 [08:36<5:08:28, 1.68s/it]
|
307 |
3%|▎ | 307/11346 [08:38<5:08:26, 1.68s/it]
|
308 |
3%|▎ | 308/11346 [08:39<5:09:05, 1.68s/it]
|
309 |
3%|▎ | 309/11346 [08:41<5:09:25, 1.68s/it]
|
310 |
3%|▎ | 310/11346 [08:43<5:09:32, 1.68s/it]
|
311 |
3%|▎ | 311/11346 [08:44<5:09:56, 1.69s/it]
|
312 |
3%|▎ | 312/11346 [08:46<5:09:44, 1.68s/it]
|
313 |
3%|▎ | 313/11346 [08:48<5:09:14, 1.68s/it]
|
314 |
3%|▎ | 314/11346 [08:49<5:09:10, 1.68s/it]
|
315 |
3%|▎ | 315/11346 [08:51<5:08:30, 1.68s/it]
|
316 |
3%|▎ | 316/11346 [08:53<5:08:03, 1.68s/it]
|
317 |
3%|▎ | 317/11346 [08:54<5:08:00, 1.68s/it]
|
318 |
3%|▎ | 318/11346 [08:56<5:07:26, 1.67s/it]
|
319 |
3%|▎ | 319/11346 [08:58<5:07:48, 1.67s/it]
|
320 |
3%|▎ | 320/11346 [08:59<5:07:47, 1.67s/it]
|
321 |
3%|▎ | 321/11346 [09:01<5:07:54, 1.68s/it]
|
322 |
3%|▎ | 322/11346 [09:03<5:08:15, 1.68s/it]
|
323 |
3%|▎ | 323/11346 [09:05<5:08:35, 1.68s/it]
|
324 |
3%|▎ | 324/11346 [09:06<5:07:48, 1.68s/it]
|
325 |
3%|▎ | 325/11346 [09:08<5:07:33, 1.67s/it]
|
326 |
3%|▎ | 326/11346 [09:10<5:07:48, 1.68s/it]
|
327 |
3%|▎ | 327/11346 [09:11<5:08:02, 1.68s/it]
|
328 |
3%|▎ | 328/11346 [09:13<5:08:07, 1.68s/it]
|
329 |
3%|▎ | 329/11346 [09:15<5:08:07, 1.68s/it]
|
330 |
3%|▎ | 330/11346 [09:16<5:07:30, 1.67s/it]
|
331 |
3%|▎ | 331/11346 [09:18<5:07:48, 1.68s/it]
|
332 |
3%|▎ | 332/11346 [09:20<5:07:49, 1.68s/it]
|
333 |
3%|▎ | 333/11346 [09:21<5:07:30, 1.68s/it]
|
334 |
3%|▎ | 334/11346 [09:23<5:07:12, 1.67s/it]
|
335 |
3%|▎ | 335/11346 [09:25<5:07:25, 1.68s/it]
|
336 |
3%|▎ | 336/11346 [09:26<5:08:11, 1.68s/it]
|
337 |
3%|▎ | 337/11346 [09:28<5:08:37, 1.68s/it]
|
338 |
3%|▎ | 338/11346 [09:30<5:08:59, 1.68s/it]
|
339 |
3%|▎ | 339/11346 [09:31<5:09:20, 1.69s/it]
|
340 |
3%|▎ | 340/11346 [09:33<5:08:50, 1.68s/it]
|
341 |
3%|▎ | 341/11346 [09:35<5:08:26, 1.68s/it]
|
342 |
3%|▎ | 342/11346 [09:36<5:08:35, 1.68s/it]
|
343 |
3%|▎ | 343/11346 [09:38<5:07:49, 1.68s/it]
|
344 |
3%|▎ | 344/11346 [09:40<5:08:33, 1.68s/it]
|
345 |
3%|▎ | 345/11346 [09:41<5:08:50, 1.68s/it]
|
346 |
3%|▎ | 346/11346 [09:43<5:07:25, 1.68s/it]
|
347 |
3%|▎ | 347/11346 [09:45<5:07:46, 1.68s/it]
|
348 |
3%|▎ | 348/11346 [09:46<5:07:39, 1.68s/it]
|
349 |
3%|▎ | 349/11346 [09:48<5:07:15, 1.68s/it]
|
350 |
3%|▎ | 350/11346 [09:50<5:07:38, 1.68s/it]
|
351 |
3%|▎ | 351/11346 [09:51<5:06:52, 1.67s/it]
|
352 |
3%|▎ | 352/11346 [09:53<5:07:16, 1.68s/it]
|
353 |
3%|▎ | 353/11346 [09:55<5:07:09, 1.68s/it]
|
354 |
3%|▎ | 354/11346 [09:57<5:06:57, 1.68s/it]
|
355 |
3%|▎ | 355/11346 [09:58<5:07:25, 1.68s/it]
|
356 |
3%|▎ | 356/11346 [10:00<5:07:07, 1.68s/it]
|
357 |
3%|▎ | 357/11346 [10:02<5:07:48, 1.68s/it]
|
358 |
3%|▎ | 358/11346 [10:03<5:07:20, 1.68s/it]
|
359 |
3%|▎ | 359/11346 [10:05<5:07:33, 1.68s/it]
|
360 |
3%|▎ | 360/11346 [10:07<5:08:02, 1.68s/it]
|
361 |
3%|▎ | 361/11346 [10:08<5:07:04, 1.68s/it]
|
362 |
3%|▎ | 362/11346 [10:10<5:07:14, 1.68s/it]
|
363 |
3%|▎ | 363/11346 [10:12<5:06:59, 1.68s/it]
|
364 |
3%|▎ | 364/11346 [10:13<5:07:16, 1.68s/it]
|
365 |
3%|▎ | 365/11346 [10:15<5:06:41, 1.68s/it]
|
366 |
3%|▎ | 366/11346 [10:17<5:06:39, 1.68s/it]
|
367 |
3%|▎ | 367/11346 [10:18<5:06:27, 1.67s/it]
|
368 |
3%|▎ | 368/11346 [10:20<5:06:38, 1.68s/it]
|
369 |
3%|▎ | 369/11346 [10:22<5:06:19, 1.67s/it]
|
370 |
3%|▎ | 370/11346 [10:23<5:06:04, 1.67s/it]
|
371 |
3%|▎ | 371/11346 [10:25<5:06:24, 1.68s/it]
|
372 |
3%|▎ | 372/11346 [10:27<5:06:36, 1.68s/it]
|
373 |
3%|▎ | 373/11346 [10:28<5:06:09, 1.67s/it]
|
374 |
3%|▎ | 374/11346 [10:30<5:06:08, 1.67s/it]
|
375 |
3%|▎ | 375/11346 [10:32<5:06:13, 1.67s/it]
|
376 |
3%|▎ | 376/11346 [10:33<5:06:27, 1.68s/it]
|
377 |
3%|▎ | 377/11346 [10:35<5:06:12, 1.67s/it]
|
378 |
3%|▎ | 378/11346 [10:37<5:05:59, 1.67s/it]
|
379 |
3%|▎ | 379/11346 [10:38<5:06:33, 1.68s/it]
|
380 |
3%|▎ | 380/11346 [10:40<5:06:22, 1.68s/it]
|
381 |
3%|▎ | 381/11346 [10:42<5:05:56, 1.67s/it]
|
382 |
3%|▎ | 382/11346 [10:43<5:05:40, 1.67s/it]
|
383 |
3%|▎ | 383/11346 [10:45<5:04:57, 1.67s/it]
|
384 |
3%|▎ | 384/11346 [10:47<5:05:19, 1.67s/it]
|
385 |
3%|▎ | 385/11346 [10:48<5:06:05, 1.68s/it]
|
386 |
3%|▎ | 386/11346 [10:50<5:05:20, 1.67s/it]
|
387 |
3%|▎ | 387/11346 [10:52<5:05:16, 1.67s/it]
|
388 |
3%|▎ | 388/11346 [10:53<5:05:16, 1.67s/it]
|
389 |
3%|▎ | 389/11346 [10:55<5:05:18, 1.67s/it]
|
390 |
3%|▎ | 390/11346 [10:57<5:05:54, 1.68s/it]
|
391 |
3%|▎ | 391/11346 [10:59<5:06:06, 1.68s/it]
|
392 |
3%|▎ | 392/11346 [11:00<5:05:30, 1.67s/it]
|
393 |
3%|▎ | 393/11346 [11:02<5:05:10, 1.67s/it]
|
394 |
3%|▎ | 394/11346 [11:04<5:05:04, 1.67s/it]
|
395 |
3%|▎ | 395/11346 [11:05<5:05:07, 1.67s/it]
|
396 |
3%|▎ | 396/11346 [11:07<5:04:45, 1.67s/it]
|
397 |
3%|▎ | 397/11346 [11:09<5:04:28, 1.67s/it]
|
398 |
4%|▎ | 398/11346 [11:10<5:04:42, 1.67s/it]
|
399 |
4%|▎ | 399/11346 [11:12<5:05:08, 1.67s/it]
|
400 |
4%|▎ | 400/11346 [11:14<5:05:40, 1.68s/it]
|
401 |
4%|▎ | 401/11346 [11:15<5:05:43, 1.68s/it]
|
402 |
4%|▎ | 402/11346 [11:17<5:05:13, 1.67s/it]
|
403 |
4%|▎ | 403/11346 [11:19<5:05:09, 1.67s/it]
|
404 |
4%|▎ | 404/11346 [11:20<5:05:18, 1.67s/it]
|
405 |
4%|▎ | 405/11346 [11:22<5:05:18, 1.67s/it]
|
406 |
4%|▎ | 406/11346 [11:24<5:04:55, 1.67s/it]
|
407 |
4%|▎ | 407/11346 [11:25<5:04:46, 1.67s/it]
|
408 |
4%|▎ | 408/11346 [11:27<5:05:44, 1.68s/it]
|
409 |
4%|▎ | 409/11346 [11:29<5:05:17, 1.67s/it]
|
410 |
4%|▎ | 410/11346 [11:30<5:05:06, 1.67s/it]
|
411 |
4%|▎ | 411/11346 [11:32<5:04:43, 1.67s/it]
|
412 |
4%|▎ | 412/11346 [11:34<5:04:45, 1.67s/it]
|
413 |
4%|▎ | 413/11346 [11:35<5:04:46, 1.67s/it]
|
414 |
4%|▎ | 414/11346 [11:37<5:04:21, 1.67s/it]
|
415 |
4%|▎ | 415/11346 [11:39<5:04:18, 1.67s/it]
|
416 |
4%|▎ | 416/11346 [11:40<5:04:29, 1.67s/it]
|
417 |
4%|▎ | 417/11346 [11:42<5:21:42, 1.77s/it]
|
418 |
4%|▎ | 418/11346 [11:44<5:16:59, 1.74s/it]
|
419 |
4%|▎ | 419/11346 [11:46<5:13:55, 1.72s/it]
|
420 |
4%|▎ | 420/11346 [11:47<5:10:47, 1.71s/it]
|
421 |
4%|▎ | 421/11346 [11:49<5:08:47, 1.70s/it]
|
422 |
4%|▎ | 422/11346 [11:51<5:07:36, 1.69s/it]
|
423 |
4%|▎ | 423/11346 [11:52<5:06:24, 1.68s/it]
|
424 |
4%|▎ | 424/11346 [11:54<5:05:53, 1.68s/it]
|
425 |
4%|▎ | 425/11346 [11:56<5:04:52, 1.68s/it]
|
426 |
4%|▍ | 426/11346 [11:57<5:04:15, 1.67s/it]
|
427 |
4%|▍ | 427/11346 [11:59<5:04:23, 1.67s/it]
|
428 |
4%|▍ | 428/11346 [12:01<5:04:02, 1.67s/it]
|
429 |
4%|▍ | 429/11346 [12:02<5:03:42, 1.67s/it]
|
430 |
4%|▍ | 430/11346 [12:04<5:03:38, 1.67s/it]
|
431 |
4%|▍ | 431/11346 [12:06<5:03:47, 1.67s/it]
|
432 |
4%|▍ | 432/11346 [12:07<5:03:50, 1.67s/it]
|
433 |
4%|▍ | 433/11346 [12:09<5:03:43, 1.67s/it]
|
434 |
4%|▍ | 434/11346 [12:11<5:03:07, 1.67s/it]
|
435 |
4%|▍ | 435/11346 [12:12<5:03:32, 1.67s/it]
|
436 |
4%|▍ | 436/11346 [12:14<5:04:27, 1.67s/it]
|
437 |
4%|▍ | 437/11346 [12:16<5:03:56, 1.67s/it]
|
438 |
4%|▍ | 438/11346 [12:17<5:03:46, 1.67s/it]
|
439 |
4%|▍ | 439/11346 [12:19<5:03:49, 1.67s/it]
|
440 |
4%|▍ | 440/11346 [12:21<5:03:23, 1.67s/it]
|
441 |
4%|▍ | 441/11346 [12:22<5:03:29, 1.67s/it]
|
442 |
4%|▍ | 442/11346 [12:24<5:03:01, 1.67s/it]
|
443 |
4%|▍ | 443/11346 [12:26<5:02:27, 1.66s/it]
|
444 |
4%|▍ | 444/11346 [12:27<5:02:31, 1.67s/it]
|
445 |
4%|▍ | 445/11346 [12:29<5:02:39, 1.67s/it]
|
446 |
4%|▍ | 446/11346 [12:31<5:02:30, 1.67s/it]
|
447 |
4%|▍ | 447/11346 [12:32<5:03:08, 1.67s/it]
|
448 |
4%|▍ | 448/11346 [12:34<5:03:54, 1.67s/it]
|
449 |
4%|▍ | 449/11346 [12:36<5:04:07, 1.67s/it]
|
450 |
4%|▍ | 450/11346 [12:37<5:04:10, 1.67s/it]
|
451 |
4%|▍ | 451/11346 [12:39<5:03:38, 1.67s/it]
|
452 |
4%|▍ | 452/11346 [12:41<5:03:29, 1.67s/it]
|
453 |
4%|▍ | 453/11346 [12:42<5:03:48, 1.67s/it]
|
454 |
4%|▍ | 454/11346 [12:44<5:03:09, 1.67s/it]
|
455 |
4%|▍ | 455/11346 [12:46<5:02:57, 1.67s/it]
|
456 |
4%|▍ | 456/11346 [12:47<5:02:57, 1.67s/it]
|
457 |
4%|▍ | 457/11346 [12:49<5:04:03, 1.68s/it]
|
458 |
4%|▍ | 458/11346 [12:51<5:03:59, 1.68s/it]
|
459 |
4%|▍ | 459/11346 [12:53<5:21:15, 1.77s/it]
|
460 |
4%|▍ | 460/11346 [12:55<5:17:49, 1.75s/it]
|
461 |
4%|▍ | 461/11346 [12:56<5:13:41, 1.73s/it]
|
462 |
4%|▍ | 462/11346 [12:58<5:13:35, 1.73s/it]
|
463 |
4%|▍ | 463/11346 [13:00<5:10:36, 1.71s/it]
|
464 |
4%|▍ | 464/11346 [13:01<5:08:09, 1.70s/it]
|
465 |
4%|▍ | 465/11346 [13:03<5:06:18, 1.69s/it]
|
466 |
4%|▍ | 466/11346 [13:05<5:04:55, 1.68s/it]
|
467 |
4%|▍ | 467/11346 [13:06<5:04:22, 1.68s/it]
|
468 |
4%|▍ | 468/11346 [13:08<5:04:22, 1.68s/it]
|
469 |
4%|▍ | 469/11346 [13:10<5:04:45, 1.68s/it]
|
470 |
4%|▍ | 470/11346 [13:11<5:04:50, 1.68s/it]
|
471 |
4%|▍ | 471/11346 [13:13<5:04:24, 1.68s/it]
|
472 |
4%|▍ | 472/11346 [13:15<5:04:33, 1.68s/it]
|
473 |
4%|▍ | 473/11346 [13:16<5:04:15, 1.68s/it]
|
474 |
4%|▍ | 474/11346 [13:18<5:03:50, 1.68s/it]
|
475 |
4%|▍ | 475/11346 [13:20<5:02:43, 1.67s/it]
|
476 |
4%|▍ | 476/11346 [13:21<5:03:09, 1.67s/it]
|
477 |
4%|▍ | 477/11346 [13:23<5:02:54, 1.67s/it]
|
478 |
4%|▍ | 478/11346 [13:25<5:02:49, 1.67s/it]
|
479 |
4%|▍ | 479/11346 [13:26<5:02:38, 1.67s/it]
|
480 |
4%|▍ | 480/11346 [13:28<5:02:39, 1.67s/it]
|
481 |
4%|▍ | 481/11346 [13:30<5:02:47, 1.67s/it]
|
482 |
4%|▍ | 482/11346 [13:31<5:01:53, 1.67s/it]
|
483 |
4%|▍ | 483/11346 [13:33<5:02:10, 1.67s/it]
|
484 |
4%|▍ | 484/11346 [13:35<5:02:28, 1.67s/it]
|
485 |
4%|▍ | 485/11346 [13:36<5:02:10, 1.67s/it]
|
486 |
4%|▍ | 486/11346 [13:38<5:02:15, 1.67s/it]
|
487 |
4%|▍ | 487/11346 [13:40<5:02:22, 1.67s/it]
|
488 |
4%|▍ | 488/11346 [13:41<5:02:32, 1.67s/it]
|
489 |
4%|▍ | 489/11346 [13:43<5:03:04, 1.67s/it]
|
490 |
4%|▍ | 490/11346 [13:45<5:02:53, 1.67s/it]
|
491 |
4%|▍ | 491/11346 [13:46<5:02:19, 1.67s/it]
|
492 |
4%|▍ | 492/11346 [13:48<5:02:10, 1.67s/it]
|
493 |
4%|▍ | 493/11346 [13:50<5:01:41, 1.67s/it]
|
494 |
4%|▍ | 494/11346 [13:51<5:02:02, 1.67s/it]
|
495 |
4%|▍ | 495/11346 [13:53<5:01:21, 1.67s/it]
|
496 |
4%|▍ | 496/11346 [13:55<5:01:26, 1.67s/it]
|
497 |
4%|▍ | 497/11346 [13:56<5:01:15, 1.67s/it]
|
498 |
4%|▍ | 498/11346 [13:58<5:01:42, 1.67s/it]
|
499 |
4%|▍ | 499/11346 [14:00<5:01:44, 1.67s/it]
|
500 |
4%|▍ | 500/11346 [14:01<5:02:14, 1.67s/it]
|
501 |
|
502 |
4%|▍ | 500/11346 [14:01<5:02:14, 1.67s/it]
|
503 |
4%|▍ | 501/11346 [14:03<5:02:32, 1.67s/it]
|
504 |
4%|▍ | 502/11346 [14:05<5:02:02, 1.67s/it]
|
505 |
4%|▍ | 503/11346 [14:06<5:01:34, 1.67s/it]
|
506 |
4%|▍ | 504/11346 [14:08<5:02:24, 1.67s/it]
|
507 |
4%|▍ | 505/11346 [14:10<5:02:05, 1.67s/it]
|
508 |
4%|▍ | 506/11346 [14:11<5:02:21, 1.67s/it]
|
509 |
4%|▍ | 507/11346 [14:13<5:01:52, 1.67s/it]
|
510 |
4%|▍ | 508/11346 [14:15<5:01:57, 1.67s/it]
|
511 |
4%|▍ | 509/11346 [14:16<5:02:53, 1.68s/it]
|
512 |
4%|▍ | 510/11346 [14:18<5:02:34, 1.68s/it]
|
513 |
5%|▍ | 511/11346 [14:20<5:02:36, 1.68s/it]
|
514 |
5%|▍ | 512/11346 [14:22<5:02:55, 1.68s/it]
|
515 |
5%|▍ | 513/11346 [14:23<5:03:14, 1.68s/it]
|
516 |
5%|▍ | 514/11346 [14:25<5:02:12, 1.67s/it]
|
517 |
5%|▍ | 515/11346 [14:27<5:02:19, 1.67s/it]
|
518 |
5%|▍ | 516/11346 [14:28<5:01:39, 1.67s/it]
|
519 |
5%|▍ | 517/11346 [14:30<5:01:15, 1.67s/it]
|
520 |
5%|▍ | 518/11346 [14:32<5:01:18, 1.67s/it]
|
521 |
5%|▍ | 519/11346 [14:33<5:00:55, 1.67s/it]
|
522 |
5%|▍ | 520/11346 [14:35<5:02:20, 1.68s/it]
|
523 |
5%|▍ | 521/11346 [14:37<5:03:12, 1.68s/it]
|
524 |
5%|▍ | 522/11346 [14:38<5:03:18, 1.68s/it]
|
525 |
5%|▍ | 523/11346 [14:40<5:03:23, 1.68s/it]
|
526 |
5%|▍ | 524/11346 [14:42<5:03:28, 1.68s/it]
|
527 |
5%|▍ | 525/11346 [14:43<5:03:05, 1.68s/it]
|
528 |
5%|▍ | 526/11346 [14:45<5:03:17, 1.68s/it]
|
529 |
5%|▍ | 527/11346 [14:47<5:03:29, 1.68s/it]
|
530 |
5%|▍ | 528/11346 [14:48<5:03:48, 1.69s/it]
|
531 |
5%|▍ | 529/11346 [14:50<5:03:55, 1.69s/it]
|
532 |
5%|▍ | 530/11346 [14:52<5:04:50, 1.69s/it]
|
533 |
5%|▍ | 531/11346 [14:53<5:04:48, 1.69s/it]
|
534 |
5%|▍ | 532/11346 [14:55<5:04:26, 1.69s/it]
|
535 |
5%|▍ | 533/11346 [14:57<5:04:27, 1.69s/it]
|
536 |
5%|▍ | 534/11346 [14:59<5:04:52, 1.69s/it]
|
537 |
5%|▍ | 535/11346 [15:00<5:04:59, 1.69s/it]
|
538 |
5%|▍ | 536/11346 [15:02<5:04:05, 1.69s/it]
|
539 |
5%|▍ | 537/11346 [15:04<5:03:08, 1.68s/it]
|
540 |
5%|▍ | 538/11346 [15:05<5:02:24, 1.68s/it]
|
541 |
5%|▍ | 539/11346 [15:07<5:01:50, 1.68s/it]
|
542 |
5%|▍ | 540/11346 [15:09<5:01:27, 1.67s/it]
|
543 |
5%|▍ | 541/11346 [15:10<5:01:09, 1.67s/it]
|
544 |
5%|▍ | 542/11346 [15:12<5:00:10, 1.67s/it]
|
545 |
5%|▍ | 543/11346 [15:14<5:00:16, 1.67s/it]
|
546 |
5%|▍ | 544/11346 [15:15<5:00:51, 1.67s/it]
|
547 |
5%|▍ | 545/11346 [15:17<5:01:04, 1.67s/it]
|
548 |
5%|▍ | 546/11346 [15:19<5:01:08, 1.67s/it]
|
549 |
5%|▍ | 547/11346 [15:20<5:00:45, 1.67s/it]
|
550 |
5%|▍ | 548/11346 [15:22<5:01:03, 1.67s/it]
|
551 |
5%|▍ | 549/11346 [15:24<5:00:43, 1.67s/it]
|
552 |
5%|▍ | 550/11346 [15:25<5:00:52, 1.67s/it]
|
553 |
5%|▍ | 551/11346 [15:27<5:00:40, 1.67s/it]
|
554 |
5%|▍ | 552/11346 [15:29<5:00:01, 1.67s/it]
|
555 |
5%|▍ | 553/11346 [15:30<4:59:21, 1.66s/it]
|
556 |
5%|▍ | 554/11346 [15:32<4:59:19, 1.66s/it]
|
557 |
5%|▍ | 555/11346 [15:34<4:59:11, 1.66s/it]
|
558 |
5%|▍ | 556/11346 [15:35<4:59:44, 1.67s/it]
|
559 |
5%|▍ | 557/11346 [15:37<4:59:52, 1.67s/it]
|
560 |
5%|▍ | 558/11346 [15:39<4:59:58, 1.67s/it]
|
561 |
5%|▍ | 559/11346 [15:40<4:59:58, 1.67s/it]
|
562 |
5%|▍ | 560/11346 [15:42<4:59:56, 1.67s/it]
|
563 |
5%|▍ | 561/11346 [15:44<4:59:27, 1.67s/it]
|
564 |
5%|▍ | 562/11346 [15:45<4:59:50, 1.67s/it]
|
565 |
5%|▍ | 563/11346 [15:47<4:59:42, 1.67s/it]
|
566 |
5%|▍ | 564/11346 [15:49<4:59:51, 1.67s/it]
|
567 |
5%|▍ | 565/11346 [15:50<4:59:37, 1.67s/it]
|
568 |
5%|▍ | 566/11346 [15:52<4:59:35, 1.67s/it]
|
569 |
5%|▍ | 567/11346 [15:54<4:59:40, 1.67s/it]
|
570 |
5%|▌ | 568/11346 [15:55<4:59:11, 1.67s/it]
|
571 |
5%|▌ | 569/11346 [15:57<4:58:53, 1.66s/it]
|
572 |
5%|▌ | 570/11346 [15:59<4:58:52, 1.66s/it]
|
573 |
5%|▌ | 571/11346 [16:00<4:58:37, 1.66s/it]
|
574 |
5%|▌ | 572/11346 [16:02<4:58:21, 1.66s/it]
|
575 |
5%|▌ | 573/11346 [16:04<4:58:34, 1.66s/it]
|
576 |
5%|▌ | 574/11346 [16:05<4:58:30, 1.66s/it]
|
577 |
5%|▌ | 575/11346 [16:07<4:58:31, 1.66s/it]
|
578 |
5%|▌ | 576/11346 [16:09<4:58:09, 1.66s/it]
|
579 |
5%|▌ | 577/11346 [16:10<4:58:28, 1.66s/it]
|
580 |
5%|▌ | 578/11346 [16:12<4:59:12, 1.67s/it]
|
581 |
5%|▌ | 579/11346 [16:14<4:58:45, 1.66s/it]
|
582 |
5%|▌ | 580/11346 [16:15<4:58:44, 1.66s/it]
|
583 |
5%|▌ | 581/11346 [16:17<4:58:33, 1.66s/it]
|
584 |
5%|▌ | 582/11346 [16:19<4:58:39, 1.66s/it]
|
585 |
5%|▌ | 583/11346 [16:20<4:58:37, 1.66s/it]
|
586 |
5%|▌ | 584/11346 [16:22<4:59:01, 1.67s/it]
|
587 |
5%|▌ | 585/11346 [16:24<4:59:00, 1.67s/it]
|
588 |
5%|▌ | 586/11346 [16:25<4:58:48, 1.67s/it]
|
589 |
5%|▌ | 587/11346 [16:27<4:59:31, 1.67s/it]
|
590 |
5%|▌ | 588/11346 [16:29<4:59:17, 1.67s/it]
|
591 |
5%|▌ | 589/11346 [16:30<4:59:01, 1.67s/it]
|
592 |
5%|▌ | 590/11346 [16:32<4:59:00, 1.67s/it]
|
593 |
5%|▌ | 591/11346 [16:34<4:58:32, 1.67s/it]
|
594 |
5%|▌ | 592/11346 [16:35<4:58:14, 1.66s/it]
|
595 |
5%|▌ | 593/11346 [16:37<4:58:02, 1.66s/it]
|
596 |
5%|▌ | 594/11346 [16:39<4:58:02, 1.66s/it]
|
597 |
5%|▌ | 595/11346 [16:40<4:58:33, 1.67s/it]
|
598 |
5%|▌ | 596/11346 [16:42<4:58:51, 1.67s/it]
|
599 |
5%|▌ | 597/11346 [16:44<4:59:06, 1.67s/it]
|
600 |
5%|▌ | 598/11346 [16:45<4:59:38, 1.67s/it]
|
601 |
5%|▌ | 599/11346 [16:47<4:59:16, 1.67s/it]
|
602 |
5%|▌ | 600/11346 [16:49<4:58:32, 1.67s/it]
|
603 |
5%|▌ | 601/11346 [16:50<4:58:21, 1.67s/it]
|
604 |
5%|▌ | 602/11346 [16:52<4:58:30, 1.67s/it]
|
605 |
5%|▌ | 603/11346 [16:54<4:58:01, 1.66s/it]
|
606 |
5%|▌ | 604/11346 [16:55<4:57:49, 1.66s/it]
|
607 |
5%|▌ | 605/11346 [16:57<4:58:10, 1.67s/it]
|
608 |
5%|▌ | 606/11346 [16:59<4:57:58, 1.66s/it]
|
609 |
5%|▌ | 607/11346 [17:00<4:57:37, 1.66s/it]
|
610 |
5%|▌ | 608/11346 [17:02<4:58:11, 1.67s/it]
|
611 |
5%|▌ | 609/11346 [17:04<4:57:44, 1.66s/it]
|
612 |
5%|▌ | 610/11346 [17:05<4:58:14, 1.67s/it]
|
613 |
5%|▌ | 611/11346 [17:07<4:58:20, 1.67s/it]
|
614 |
5%|▌ | 612/11346 [17:09<4:58:21, 1.67s/it]
|
615 |
5%|▌ | 613/11346 [17:10<4:57:54, 1.67s/it]
|
616 |
5%|▌ | 614/11346 [17:12<4:57:44, 1.66s/it]
|
617 |
5%|▌ | 615/11346 [17:14<4:57:21, 1.66s/it]
|
618 |
5%|▌ | 616/11346 [17:15<4:57:10, 1.66s/it]
|
619 |
5%|▌ | 617/11346 [17:17<4:57:06, 1.66s/it]
|
620 |
5%|▌ | 618/11346 [17:19<4:57:04, 1.66s/it]
|
621 |
5%|▌ | 619/11346 [17:20<4:56:53, 1.66s/it]
|
622 |
5%|▌ | 620/11346 [17:22<4:56:52, 1.66s/it]
|
623 |
5%|▌ | 621/11346 [17:24<4:57:12, 1.66s/it]
|
624 |
5%|▌ | 622/11346 [17:25<4:57:38, 1.67s/it]
|
625 |
5%|▌ | 623/11346 [17:27<4:57:06, 1.66s/it]
|
626 |
5%|▌ | 624/11346 [17:29<4:57:06, 1.66s/it]
|
627 |
6%|▌ | 625/11346 [17:30<4:57:03, 1.66s/it]
|
628 |
6%|▌ | 626/11346 [17:32<4:57:12, 1.66s/it]
|
629 |
6%|▌ | 627/11346 [17:34<4:57:32, 1.67s/it]
|
630 |
6%|▌ | 628/11346 [17:35<4:57:31, 1.67s/it]
|
631 |
6%|▌ | 629/11346 [17:37<4:57:00, 1.66s/it]
|
632 |
6%|▌ | 630/11346 [17:39<4:57:02, 1.66s/it]
|
633 |
6%|▌ | 631/11346 [17:40<4:57:57, 1.67s/it]
|
634 |
6%|▌ | 632/11346 [17:42<4:59:03, 1.67s/it]
|
635 |
6%|▌ | 633/11346 [17:44<4:59:56, 1.68s/it]
|
636 |
6%|▌ | 634/11346 [17:45<5:00:30, 1.68s/it]
|
637 |
6%|▌ | 635/11346 [17:47<5:01:20, 1.69s/it]
|
638 |
6%|▌ | 636/11346 [17:49<5:01:53, 1.69s/it]
|
639 |
6%|▌ | 637/11346 [17:50<5:02:01, 1.69s/it]
|
640 |
6%|▌ | 638/11346 [17:52<5:01:55, 1.69s/it]
|
641 |
6%|▌ | 639/11346 [17:54<5:02:05, 1.69s/it]
|
642 |
6%|▌ | 640/11346 [17:55<5:01:57, 1.69s/it]
|
643 |
6%|▌ | 641/11346 [17:57<5:02:03, 1.69s/it]
|
644 |
6%|▌ | 642/11346 [17:59<5:01:59, 1.69s/it]
|
645 |
6%|▌ | 643/11346 [18:01<5:01:45, 1.69s/it]
|
646 |
6%|▌ | 644/11346 [18:02<5:01:34, 1.69s/it]
|
647 |
6%|▌ | 645/11346 [18:04<5:01:09, 1.69s/it]
|
648 |
6%|▌ | 646/11346 [18:06<5:01:04, 1.69s/it]
|
649 |
6%|▌ | 647/11346 [18:07<5:00:31, 1.69s/it]
|
650 |
6%|▌ | 648/11346 [18:09<4:59:12, 1.68s/it]
|
651 |
6%|▌ | 649/11346 [18:11<4:58:50, 1.68s/it]
|
652 |
6%|▌ | 650/11346 [18:12<4:57:53, 1.67s/it]
|
653 |
6%|▌ | 651/11346 [18:14<4:57:24, 1.67s/it]
|
654 |
6%|▌ | 652/11346 [18:16<4:57:12, 1.67s/it]
|
655 |
6%|▌ | 653/11346 [18:17<4:56:21, 1.66s/it]
|
656 |
6%|▌ | 654/11346 [18:19<4:57:55, 1.67s/it]
|
657 |
6%|▌ | 655/11346 [18:21<4:58:01, 1.67s/it]
|
658 |
6%|▌ | 656/11346 [18:22<4:58:46, 1.68s/it]
|
659 |
6%|▌ | 657/11346 [18:24<4:59:30, 1.68s/it]
|
660 |
6%|▌ | 658/11346 [18:26<5:00:04, 1.68s/it]
|
661 |
6%|▌ | 659/11346 [18:27<5:00:31, 1.69s/it]
|
662 |
6%|▌ | 660/11346 [18:29<5:00:33, 1.69s/it]
|
663 |
6%|▌ | 661/11346 [18:31<5:00:11, 1.69s/it]
|
664 |
6%|▌ | 662/11346 [18:32<5:00:16, 1.69s/it]
|
665 |
6%|▌ | 663/11346 [18:34<5:00:07, 1.69s/it]
|
666 |
6%|▌ | 664/11346 [18:36<4:59:52, 1.68s/it]
|
667 |
6%|▌ | 665/11346 [18:37<4:59:42, 1.68s/it]
|
668 |
6%|▌ | 666/11346 [18:39<5:00:08, 1.69s/it]
|
669 |
6%|▌ | 667/11346 [18:41<4:59:57, 1.69s/it]
|
670 |
6%|▌ | 668/11346 [18:43<5:00:15, 1.69s/it]
|
671 |
6%|▌ | 669/11346 [18:44<5:00:14, 1.69s/it]
|
672 |
6%|▌ | 670/11346 [18:46<5:00:31, 1.69s/it]
|
673 |
6%|▌ | 671/11346 [18:48<5:00:12, 1.69s/it]
|
674 |
6%|▌ | 672/11346 [18:49<4:59:53, 1.69s/it]
|
675 |
6%|▌ | 673/11346 [18:51<5:00:01, 1.69s/it]
|
676 |
6%|▌ | 674/11346 [18:53<5:00:30, 1.69s/it]
|
677 |
6%|▌ | 675/11346 [18:54<5:00:06, 1.69s/it]
|
678 |
6%|▌ | 676/11346 [18:56<4:59:33, 1.68s/it]
|
679 |
6%|▌ | 677/11346 [18:58<4:59:41, 1.69s/it]
|
680 |
6%|▌ | 678/11346 [18:59<4:59:27, 1.68s/it]
|
681 |
6%|▌ | 679/11346 [19:01<4:59:22, 1.68s/it]
|
682 |
6%|▌ | 680/11346 [19:03<4:58:49, 1.68s/it]
|
683 |
6%|▌ | 681/11346 [19:04<4:58:44, 1.68s/it]
|
684 |
6%|▌ | 682/11346 [19:06<4:59:19, 1.68s/it]
|
685 |
6%|▌ | 683/11346 [19:08<5:00:28, 1.69s/it]
|
686 |
6%|▌ | 684/11346 [19:10<5:00:22, 1.69s/it]
|
687 |
6%|▌ | 685/11346 [19:11<5:00:50, 1.69s/it]
|
688 |
6%|▌ | 686/11346 [19:13<5:00:45, 1.69s/it]
|
689 |
6%|▌ | 687/11346 [19:15<5:00:53, 1.69s/it]
|
690 |
6%|▌ | 688/11346 [19:16<5:00:21, 1.69s/it]
|
691 |
6%|▌ | 689/11346 [19:18<4:59:46, 1.69s/it]
|
692 |
6%|▌ | 690/11346 [19:20<4:59:40, 1.69s/it]
|
693 |
6%|▌ | 691/11346 [19:21<4:59:23, 1.69s/it]
|
694 |
6%|▌ | 692/11346 [19:23<4:59:26, 1.69s/it]
|
695 |
6%|▌ | 693/11346 [19:25<4:59:19, 1.69s/it]
|
696 |
6%|▌ | 694/11346 [19:26<4:58:49, 1.68s/it]
|
697 |
6%|▌ | 695/11346 [19:28<4:58:41, 1.68s/it]
|
698 |
6%|▌ | 696/11346 [19:30<4:58:39, 1.68s/it]
|
699 |
6%|▌ | 697/11346 [19:31<4:58:06, 1.68s/it]
|
700 |
6%|▌ | 698/11346 [19:33<4:58:06, 1.68s/it]
|
701 |
6%|▌ | 699/11346 [19:35<4:57:56, 1.68s/it]
|
702 |
6%|▌ | 700/11346 [19:36<4:58:00, 1.68s/it]
|
703 |
6%|▌ | 701/11346 [19:38<4:58:51, 1.68s/it]
|
704 |
6%|▌ | 702/11346 [19:40<4:59:12, 1.69s/it]
|
705 |
6%|▌ | 703/11346 [19:42<4:59:37, 1.69s/it]
|
706 |
6%|▌ | 704/11346 [19:43<5:00:02, 1.69s/it]
|
707 |
6%|▌ | 705/11346 [19:45<4:59:14, 1.69s/it]
|
708 |
6%|▌ | 706/11346 [19:47<4:58:56, 1.69s/it]
|
709 |
6%|▌ | 707/11346 [19:48<4:58:31, 1.68s/it]
|
710 |
6%|▌ | 708/11346 [19:50<4:57:54, 1.68s/it]
|
711 |
6%|▌ | 709/11346 [19:52<4:58:07, 1.68s/it]
|
712 |
6%|▋ | 710/11346 [19:53<4:57:46, 1.68s/it]
|
713 |
6%|▋ | 711/11346 [19:55<4:57:57, 1.68s/it]
|
714 |
6%|▋ | 712/11346 [19:57<4:58:10, 1.68s/it]
|
715 |
6%|▋ | 713/11346 [19:58<4:57:58, 1.68s/it]
|
716 |
6%|▋ | 714/11346 [20:00<4:57:53, 1.68s/it]
|
717 |
6%|▋ | 715/11346 [20:02<4:57:37, 1.68s/it]
|
718 |
6%|▋ | 716/11346 [20:03<4:57:45, 1.68s/it]
|
719 |
6%|▋ | 717/11346 [20:05<4:57:19, 1.68s/it]
|
720 |
6%|▋ | 718/11346 [20:07<4:57:44, 1.68s/it]
|
721 |
6%|▋ | 719/11346 [20:08<4:56:51, 1.68s/it]
|
722 |
6%|▋ | 720/11346 [20:10<4:56:15, 1.67s/it]
|
723 |
6%|▋ | 721/11346 [20:12<4:55:17, 1.67s/it]
|
724 |
6%|▋ | 722/11346 [20:13<4:54:35, 1.66s/it]
|
725 |
6%|▋ | 723/11346 [20:15<4:54:33, 1.66s/it]
|
726 |
6%|▋ | 724/11346 [20:17<4:54:14, 1.66s/it]
|
727 |
6%|▋ | 725/11346 [20:18<4:54:05, 1.66s/it]
|
728 |
6%|▋ | 726/11346 [20:20<4:55:30, 1.67s/it]
|
729 |
6%|▋ | 727/11346 [20:22<4:56:16, 1.67s/it]
|
730 |
6%|▋ | 728/11346 [20:23<4:56:08, 1.67s/it]
|
731 |
6%|▋ | 729/11346 [20:25<4:56:47, 1.68s/it]
|
732 |
6%|▋ | 730/11346 [20:27<4:57:13, 1.68s/it]
|
733 |
6%|▋ | 731/11346 [20:28<4:56:30, 1.68s/it]
|
734 |
6%|▋ | 732/11346 [20:30<4:56:32, 1.68s/it]
|
735 |
6%|▋ | 733/11346 [20:32<4:55:43, 1.67s/it]
|
736 |
6%|▋ | 734/11346 [20:33<4:55:09, 1.67s/it]
|
737 |
6%|▋ | 735/11346 [20:35<4:54:32, 1.67s/it]
|
738 |
6%|▋ | 736/11346 [20:37<4:54:17, 1.66s/it]
|
739 |
6%|▋ | 737/11346 [20:38<4:53:46, 1.66s/it]
|
740 |
7%|▋ | 738/11346 [20:40<4:53:33, 1.66s/it]
|
741 |
7%|▋ | 739/11346 [20:42<4:54:24, 1.67s/it]
|
742 |
7%|▋ | 740/11346 [20:43<4:54:11, 1.66s/it]
|
743 |
7%|▋ | 741/11346 [20:45<4:54:15, 1.66s/it]
|
744 |
7%|▋ | 742/11346 [20:47<4:53:57, 1.66s/it]
|
745 |
7%|▋ | 743/11346 [20:48<4:53:34, 1.66s/it]
|
746 |
7%|▋ | 744/11346 [20:50<4:53:25, 1.66s/it]
|
747 |
7%|▋ | 745/11346 [20:52<4:53:35, 1.66s/it]
|
748 |
7%|▋ | 746/11346 [20:53<4:53:32, 1.66s/it]
|
749 |
7%|▋ | 747/11346 [20:55<4:53:38, 1.66s/it]
|
750 |
7%|▋ | 748/11346 [20:57<4:53:14, 1.66s/it]
|
751 |
7%|▋ | 749/11346 [20:58<4:53:01, 1.66s/it]
|
752 |
7%|▋ | 750/11346 [21:00<4:53:11, 1.66s/it]
|
753 |
7%|▋ | 751/11346 [21:02<4:53:15, 1.66s/it]
|
754 |
7%|▋ | 752/11346 [21:03<4:52:58, 1.66s/it]
|
755 |
7%|▋ | 753/11346 [21:05<4:54:12, 1.67s/it]
|
756 |
7%|▋ | 754/11346 [21:07<4:55:08, 1.67s/it]
|
757 |
7%|▋ | 755/11346 [21:08<4:54:37, 1.67s/it]
|
758 |
7%|▋ | 756/11346 [21:10<4:54:09, 1.67s/it]
|
759 |
7%|▋ | 757/11346 [21:12<4:53:54, 1.67s/it]
|
760 |
7%|▋ | 758/11346 [21:13<4:53:53, 1.67s/it]
|
761 |
7%|▋ | 759/11346 [21:15<4:53:47, 1.66s/it]
|
762 |
7%|▋ | 760/11346 [21:17<4:53:31, 1.66s/it]
|
763 |
7%|▋ | 761/11346 [21:18<4:53:03, 1.66s/it]
|
764 |
7%|▋ | 762/11346 [21:20<4:53:05, 1.66s/it]
|
765 |
7%|▋ | 763/11346 [21:22<4:54:17, 1.67s/it]
|
766 |
7%|▋ | 764/11346 [21:23<4:54:43, 1.67s/it]
|
767 |
7%|▋ | 765/11346 [21:25<4:55:05, 1.67s/it]
|
768 |
7%|▋ | 766/11346 [21:27<4:55:33, 1.68s/it]
|
769 |
7%|▋ | 767/11346 [21:28<4:55:35, 1.68s/it]
|
770 |
7%|▋ | 768/11346 [21:30<4:55:51, 1.68s/it]
|
771 |
7%|▋ | 769/11346 [21:32<4:56:18, 1.68s/it]
|
772 |
7%|▋ | 770/11346 [21:33<4:55:49, 1.68s/it]
|
773 |
7%|▋ | 771/11346 [21:35<4:55:55, 1.68s/it]
|
774 |
7%|▋ | 772/11346 [21:37<4:55:46, 1.68s/it]
|
775 |
7%|▋ | 773/11346 [21:38<4:55:42, 1.68s/it]
|
776 |
7%|▋ | 774/11346 [21:40<4:55:06, 1.67s/it]
|
777 |
7%|▋ | 775/11346 [21:42<4:54:05, 1.67s/it]
|
778 |
7%|▋ | 776/11346 [21:43<4:53:21, 1.67s/it]
|
779 |
7%|▋ | 777/11346 [21:45<4:54:19, 1.67s/it]
|
780 |
7%|▋ | 778/11346 [21:47<4:54:38, 1.67s/it]
|
781 |
7%|▋ | 779/11346 [21:48<4:54:30, 1.67s/it]
|
782 |
7%|▋ | 780/11346 [21:50<4:55:19, 1.68s/it]
|
783 |
7%|▋ | 781/11346 [21:52<4:55:11, 1.68s/it]
|
784 |
7%|▋ | 782/11346 [21:54<4:54:34, 1.67s/it]
|
785 |
7%|▋ | 783/11346 [21:55<4:54:44, 1.67s/it]
|
786 |
7%|▋ | 784/11346 [21:57<4:54:42, 1.67s/it]
|
787 |
7%|▋ | 785/11346 [21:59<4:54:49, 1.68s/it]
|
788 |
7%|▋ | 786/11346 [22:00<4:55:14, 1.68s/it]
|
789 |
7%|▋ | 787/11346 [22:02<4:55:26, 1.68s/it]
|
790 |
7%|▋ | 788/11346 [22:04<4:55:16, 1.68s/it]
|
791 |
7%|▋ | 789/11346 [22:05<4:54:52, 1.68s/it]
|
792 |
7%|▋ | 790/11346 [22:07<4:54:51, 1.68s/it]
|
793 |
7%|▋ | 791/11346 [22:09<4:55:31, 1.68s/it]
|
794 |
7%|▋ | 792/11346 [22:10<4:55:13, 1.68s/it]
|
795 |
7%|▋ | 793/11346 [22:12<4:54:55, 1.68s/it]
|
796 |
7%|▋ | 794/11346 [22:14<4:54:53, 1.68s/it]
|
797 |
7%|▋ | 795/11346 [22:15<4:54:41, 1.68s/it]
|
798 |
7%|▋ | 796/11346 [22:17<4:54:32, 1.68s/it]
|
799 |
7%|▋ | 797/11346 [22:19<4:54:57, 1.68s/it]
|
800 |
7%|▋ | 798/11346 [22:20<4:55:02, 1.68s/it]
|
801 |
7%|▋ | 799/11346 [22:22<4:55:15, 1.68s/it]
|
802 |
7%|▋ | 800/11346 [22:24<4:55:11, 1.68s/it]
|
803 |
7%|▋ | 801/11346 [22:25<4:54:19, 1.67s/it]
|
804 |
7%|▋ | 802/11346 [22:27<4:53:24, 1.67s/it]
|
805 |
7%|▋ | 803/11346 [22:29<4:52:46, 1.67s/it]
|
806 |
7%|▋ | 804/11346 [22:30<4:52:32, 1.67s/it]
|
807 |
7%|▋ | 805/11346 [22:32<4:52:00, 1.66s/it]
|
808 |
7%|▋ | 806/11346 [22:34<4:52:02, 1.66s/it]
|
809 |
7%|▋ | 807/11346 [22:35<4:53:44, 1.67s/it]
|
810 |
7%|▋ | 808/11346 [22:37<4:54:03, 1.67s/it]
|
811 |
7%|▋ | 809/11346 [22:39<4:54:23, 1.68s/it]
|
812 |
7%|▋ | 810/11346 [22:40<4:53:49, 1.67s/it]
|
813 |
7%|▋ | 811/11346 [22:42<4:53:01, 1.67s/it]
|
814 |
7%|▋ | 812/11346 [22:44<4:52:27, 1.67s/it]
|
815 |
7%|▋ | 813/11346 [22:45<4:52:18, 1.67s/it]
|
816 |
7%|▋ | 814/11346 [22:47<4:52:02, 1.66s/it]
|
817 |
7%|▋ | 815/11346 [22:49<4:51:27, 1.66s/it]
|
818 |
7%|▋ | 816/11346 [22:50<4:51:19, 1.66s/it]
|
819 |
7%|▋ | 817/11346 [22:52<4:51:09, 1.66s/it]
|
820 |
7%|▋ | 818/11346 [22:54<4:51:02, 1.66s/it]
|
821 |
7%|▋ | 819/11346 [22:55<4:51:01, 1.66s/it]
|
822 |
7%|▋ | 820/11346 [22:57<4:51:02, 1.66s/it]
|
823 |
7%|▋ | 821/11346 [22:59<5:08:01, 1.76s/it]
|
824 |
7%|▋ | 822/11346 [23:01<5:02:52, 1.73s/it]
|
825 |
7%|▋ | 823/11346 [23:02<4:59:30, 1.71s/it]
|
826 |
7%|▋ | 824/11346 [23:04<4:56:55, 1.69s/it]
|
827 |
7%|▋ | 825/11346 [23:06<4:55:07, 1.68s/it]
|
828 |
7%|▋ | 826/11346 [23:07<4:53:39, 1.67s/it]
|
829 |
7%|▋ | 827/11346 [23:09<4:52:41, 1.67s/it]
|
830 |
7%|▋ | 828/11346 [23:11<4:51:52, 1.66s/it]
|
831 |
7%|▋ | 829/11346 [23:12<4:51:17, 1.66s/it]
|
832 |
7%|▋ | 830/11346 [23:14<4:52:05, 1.67s/it]
|
833 |
7%|▋ | 831/11346 [23:16<4:52:35, 1.67s/it]
|
834 |
7%|▋ | 832/11346 [23:17<4:52:52, 1.67s/it]
|
835 |
7%|▋ | 833/11346 [23:19<4:52:25, 1.67s/it]
|
836 |
7%|▋ | 834/11346 [23:21<4:52:15, 1.67s/it]
|
837 |
7%|▋ | 835/11346 [23:22<4:51:22, 1.66s/it]
|
838 |
7%|▋ | 836/11346 [23:24<4:50:47, 1.66s/it]
|
839 |
7%|▋ | 837/11346 [23:26<4:50:29, 1.66s/it]
|
840 |
7%|▋ | 838/11346 [23:27<4:50:16, 1.66s/it]
|
841 |
7%|▋ | 839/11346 [23:29<4:49:57, 1.66s/it]
|
842 |
7%|▋ | 840/11346 [23:31<4:50:23, 1.66s/it]
|
843 |
7%|▋ | 841/11346 [23:32<4:50:18, 1.66s/it]
|
844 |
7%|▋ | 842/11346 [23:34<4:50:20, 1.66s/it]
|
845 |
7%|▋ | 843/11346 [23:35<4:49:52, 1.66s/it]
|
846 |
7%|▋ | 844/11346 [23:37<4:49:43, 1.66s/it]
|
847 |
7%|▋ | 845/11346 [23:39<4:49:51, 1.66s/it]
|
848 |
7%|▋ | 846/11346 [23:40<4:49:52, 1.66s/it]
|
849 |
7%|▋ | 847/11346 [23:42<4:49:52, 1.66s/it]
|
850 |
7%|▋ | 848/11346 [23:44<4:50:00, 1.66s/it]
|
851 |
7%|▋ | 849/11346 [23:45<4:50:11, 1.66s/it]
|
852 |
7%|▋ | 850/11346 [23:47<4:50:22, 1.66s/it]
|
853 |
8%|▊ | 851/11346 [23:49<4:49:56, 1.66s/it]
|
854 |
8%|▊ | 852/11346 [23:50<4:49:53, 1.66s/it]
|
855 |
8%|▊ | 853/11346 [23:52<4:50:04, 1.66s/it]
|
856 |
8%|▊ | 854/11346 [23:54<4:50:03, 1.66s/it]
|
857 |
8%|▊ | 855/11346 [23:55<4:49:53, 1.66s/it]
|
858 |
8%|▊ | 856/11346 [23:57<4:49:48, 1.66s/it]
|
859 |
8%|▊ | 857/11346 [23:59<4:49:27, 1.66s/it]
|
860 |
8%|▊ | 858/11346 [24:00<4:49:06, 1.65s/it]
|
861 |
8%|▊ | 859/11346 [24:02<4:49:20, 1.66s/it]
|
862 |
8%|▊ | 860/11346 [24:04<4:49:13, 1.65s/it]
|
863 |
8%|▊ | 861/11346 [24:05<4:49:15, 1.66s/it]
|
864 |
8%|▊ | 862/11346 [24:07<4:49:24, 1.66s/it]
|
865 |
8%|▊ | 863/11346 [24:09<4:49:17, 1.66s/it]
|
866 |
8%|▊ | 864/11346 [24:10<4:49:44, 1.66s/it]
|
867 |
8%|▊ | 865/11346 [24:12<4:49:21, 1.66s/it]
|
868 |
8%|▊ | 866/11346 [24:14<4:49:42, 1.66s/it]
|
869 |
8%|▊ | 867/11346 [24:15<4:52:05, 1.67s/it]
|
870 |
8%|▊ | 868/11346 [24:17<4:51:23, 1.67s/it]
|
871 |
8%|▊ | 869/11346 [24:19<4:50:54, 1.67s/it]
|
872 |
8%|▊ | 870/11346 [24:20<4:50:04, 1.66s/it]
|
873 |
8%|▊ | 871/11346 [24:22<4:49:53, 1.66s/it]
|
874 |
8%|▊ | 872/11346 [24:24<4:49:23, 1.66s/it]
|
875 |
8%|▊ | 873/11346 [24:25<4:49:25, 1.66s/it]
|
876 |
8%|▊ | 874/11346 [24:27<4:49:14, 1.66s/it]
|
877 |
8%|▊ | 875/11346 [24:29<4:50:23, 1.66s/it]
|
878 |
8%|▊ | 876/11346 [24:30<4:51:25, 1.67s/it]
|
879 |
8%|▊ | 877/11346 [24:32<4:52:09, 1.67s/it]
|
880 |
8%|▊ | 878/11346 [24:34<4:52:06, 1.67s/it]
|
881 |
8%|▊ | 879/11346 [24:35<4:52:55, 1.68s/it]
|
882 |
8%|▊ | 880/11346 [24:37<4:52:37, 1.68s/it]
|
883 |
8%|▊ | 881/11346 [24:39<4:52:20, 1.68s/it]
|
884 |
8%|▊ | 882/11346 [24:40<4:52:30, 1.68s/it]
|
885 |
8%|▊ | 883/11346 [24:42<4:52:46, 1.68s/it]
|
886 |
8%|▊ | 884/11346 [24:44<4:52:39, 1.68s/it]
|
887 |
8%|▊ | 885/11346 [24:45<4:52:46, 1.68s/it]
|
888 |
8%|▊ | 886/11346 [24:47<4:52:38, 1.68s/it]
|
889 |
8%|▊ | 887/11346 [24:49<4:52:23, 1.68s/it]
|
890 |
8%|▊ | 888/11346 [24:50<4:52:35, 1.68s/it]
|
891 |
8%|▊ | 889/11346 [24:52<4:53:13, 1.68s/it]
|
892 |
8%|▊ | 890/11346 [24:54<4:53:15, 1.68s/it]
|
893 |
8%|▊ | 891/11346 [24:55<4:53:01, 1.68s/it]
|
894 |
8%|▊ | 892/11346 [24:57<4:52:58, 1.68s/it]
|
895 |
8%|▊ | 893/11346 [24:59<4:52:40, 1.68s/it]
|
896 |
8%|▊ | 894/11346 [25:01<4:52:50, 1.68s/it]
|
897 |
8%|▊ | 895/11346 [25:02<4:52:28, 1.68s/it]
|
898 |
8%|▊ | 896/11346 [25:04<4:52:07, 1.68s/it]
|
899 |
8%|▊ | 897/11346 [25:06<4:52:10, 1.68s/it]
|
900 |
8%|▊ | 898/11346 [25:07<4:51:51, 1.68s/it]
|
901 |
8%|▊ | 899/11346 [25:09<4:51:58, 1.68s/it]
|
902 |
8%|▊ | 900/11346 [25:11<4:51:59, 1.68s/it]
|
903 |
8%|▊ | 901/11346 [25:12<4:51:45, 1.68s/it]
|
904 |
8%|▊ | 902/11346 [25:14<4:51:35, 1.68s/it]
|
905 |
8%|▊ | 903/11346 [25:16<4:51:44, 1.68s/it]
|
906 |
8%|▊ | 904/11346 [25:17<4:51:24, 1.67s/it]
|
907 |
8%|▊ | 905/11346 [25:19<4:51:19, 1.67s/it]
|
908 |
8%|▊ | 906/11346 [25:21<4:51:39, 1.68s/it]
|
909 |
8%|▊ | 907/11346 [25:22<4:51:33, 1.68s/it]
|
910 |
8%|▊ | 908/11346 [25:24<4:51:36, 1.68s/it]
|
911 |
8%|▊ | 909/11346 [25:26<4:51:44, 1.68s/it]
|
912 |
8%|▊ | 910/11346 [25:27<4:51:53, 1.68s/it]
|
913 |
8%|▊ | 911/11346 [25:29<4:51:47, 1.68s/it]
|
914 |
8%|▊ | 912/11346 [25:31<4:51:38, 1.68s/it]
|
915 |
8%|▊ | 913/11346 [25:32<4:51:39, 1.68s/it]
|
916 |
8%|▊ | 914/11346 [25:34<4:51:36, 1.68s/it]
|
917 |
8%|▊ | 915/11346 [25:36<4:51:14, 1.68s/it]
|
918 |
8%|▊ | 916/11346 [25:37<4:51:21, 1.68s/it]
|
919 |
8%|▊ | 917/11346 [25:39<4:51:13, 1.68s/it]
|
920 |
8%|▊ | 918/11346 [25:41<4:51:13, 1.68s/it]
|
921 |
8%|▊ | 919/11346 [25:42<4:51:11, 1.68s/it]
|
922 |
8%|▊ | 920/11346 [25:44<4:50:58, 1.67s/it]
|
923 |
8%|▊ | 921/11346 [25:46<4:50:41, 1.67s/it]
|
924 |
8%|▊ | 922/11346 [25:47<4:50:43, 1.67s/it]
|
925 |
8%|▊ | 923/11346 [25:49<4:50:50, 1.67s/it]
|
926 |
8%|▊ | 924/11346 [25:51<4:50:00, 1.67s/it]
|
927 |
8%|▊ | 925/11346 [25:52<4:49:06, 1.66s/it]
|
928 |
8%|▊ | 926/11346 [25:54<4:48:28, 1.66s/it]
|
929 |
8%|▊ | 927/11346 [25:56<4:49:21, 1.67s/it]
|
930 |
8%|▊ | 928/11346 [25:57<4:49:41, 1.67s/it]
|
931 |
8%|▊ | 929/11346 [25:59<4:49:47, 1.67s/it]
|
932 |
8%|▊ | 930/11346 [26:01<4:50:23, 1.67s/it]
|
933 |
8%|▊ | 931/11346 [26:02<4:50:44, 1.67s/it]
|
934 |
8%|▊ | 932/11346 [26:04<4:50:59, 1.68s/it]
|
935 |
8%|▊ | 933/11346 [26:06<4:51:13, 1.68s/it]
|
936 |
8%|▊ | 934/11346 [26:08<4:51:35, 1.68s/it]
|
937 |
8%|▊ | 935/11346 [26:09<4:51:26, 1.68s/it]
|
938 |
8%|▊ | 936/11346 [26:11<4:51:53, 1.68s/it]
|
939 |
8%|▊ | 937/11346 [26:13<4:51:13, 1.68s/it]
|
940 |
8%|▊ | 938/11346 [26:14<4:51:23, 1.68s/it]
|
941 |
8%|▊ | 939/11346 [26:16<4:50:59, 1.68s/it]
|
942 |
8%|▊ | 940/11346 [26:18<4:51:04, 1.68s/it]
|
943 |
8%|▊ | 941/11346 [26:19<4:50:42, 1.68s/it]
|
944 |
8%|▊ | 942/11346 [26:21<4:50:25, 1.67s/it]
|
945 |
8%|▊ | 943/11346 [26:23<4:50:25, 1.68s/it]
|
946 |
8%|▊ | 944/11346 [26:24<4:50:40, 1.68s/it]
|
947 |
8%|▊ | 945/11346 [26:26<4:50:35, 1.68s/it]
|
948 |
8%|▊ | 946/11346 [26:28<4:50:44, 1.68s/it]
|
949 |
8%|▊ | 947/11346 [26:29<4:50:50, 1.68s/it]
|
950 |
8%|▊ | 948/11346 [26:31<4:50:59, 1.68s/it]
|
951 |
8%|▊ | 949/11346 [26:33<4:50:40, 1.68s/it]
|
952 |
8%|▊ | 950/11346 [26:34<4:50:36, 1.68s/it]
|
953 |
8%|▊ | 951/11346 [26:36<4:50:42, 1.68s/it]
|
954 |
8%|▊ | 952/11346 [26:38<4:50:17, 1.68s/it]
|
955 |
8%|▊ | 953/11346 [26:39<4:50:12, 1.68s/it]
|
956 |
8%|▊ | 954/11346 [26:41<4:50:11, 1.68s/it]
|
957 |
8%|▊ | 955/11346 [26:43<4:50:10, 1.68s/it]
|
958 |
8%|▊ | 956/11346 [26:44<4:50:10, 1.68s/it]
|
959 |
8%|▊ | 957/11346 [26:46<4:50:18, 1.68s/it]
|
960 |
8%|▊ | 958/11346 [26:48<4:50:12, 1.68s/it]
|
961 |
8%|▊ | 959/11346 [26:49<4:49:16, 1.67s/it]
|
962 |
8%|▊ | 960/11346 [26:51<4:48:29, 1.67s/it]
|
963 |
8%|▊ | 961/11346 [26:53<4:48:08, 1.66s/it]
|
964 |
8%|▊ | 962/11346 [26:54<4:47:46, 1.66s/it]
|
965 |
8%|▊ | 963/11346 [26:56<4:47:19, 1.66s/it]
|
966 |
8%|▊ | 964/11346 [26:58<4:46:57, 1.66s/it]
|
967 |
9%|▊ | 965/11346 [26:59<4:46:44, 1.66s/it]
|
968 |
9%|▊ | 966/11346 [27:01<4:46:35, 1.66s/it]
|
969 |
9%|▊ | 967/11346 [27:03<4:46:30, 1.66s/it]
|
970 |
9%|▊ | 968/11346 [27:04<4:46:48, 1.66s/it]
|
971 |
9%|▊ | 969/11346 [27:06<4:47:47, 1.66s/it]
|
972 |
9%|▊ | 970/11346 [27:08<4:48:03, 1.67s/it]
|
973 |
9%|▊ | 971/11346 [27:09<4:48:29, 1.67s/it]
|
974 |
9%|▊ | 972/11346 [27:11<4:48:49, 1.67s/it]
|
975 |
9%|▊ | 973/11346 [27:13<4:49:01, 1.67s/it]
|
976 |
9%|▊ | 974/11346 [27:14<4:49:08, 1.67s/it]
|
977 |
9%|▊ | 975/11346 [27:16<4:49:18, 1.67s/it]
|
978 |
9%|▊ | 976/11346 [27:18<4:49:31, 1.68s/it]
|
979 |
9%|▊ | 977/11346 [27:19<4:49:28, 1.68s/it]
|
980 |
9%|▊ | 978/11346 [27:21<4:49:20, 1.67s/it]
|
981 |
9%|▊ | 979/11346 [27:23<4:49:30, 1.68s/it]
|
982 |
9%|▊ | 980/11346 [27:24<4:49:38, 1.68s/it]
|
983 |
9%|▊ | 981/11346 [27:26<4:49:21, 1.68s/it]
|
984 |
9%|▊ | 982/11346 [27:28<4:49:27, 1.68s/it]
|
985 |
9%|▊ | 983/11346 [27:29<4:49:37, 1.68s/it]
|
986 |
9%|▊ | 984/11346 [27:31<4:49:31, 1.68s/it]
|
987 |
9%|▊ | 985/11346 [27:33<4:49:24, 1.68s/it]
|
988 |
9%|▊ | 986/11346 [27:34<4:49:08, 1.67s/it]
|
989 |
9%|▊ | 987/11346 [27:36<4:49:02, 1.67s/it]
|
990 |
9%|▊ | 988/11346 [27:38<4:49:15, 1.68s/it]
|
991 |
9%|▊ | 989/11346 [27:39<4:48:55, 1.67s/it]
|
992 |
9%|▊ | 990/11346 [27:41<4:48:56, 1.67s/it]
|
993 |
9%|▊ | 991/11346 [27:43<4:48:55, 1.67s/it]
|
994 |
9%|▊ | 992/11346 [27:45<4:49:00, 1.67s/it]
|
995 |
9%|▉ | 993/11346 [27:46<4:49:17, 1.68s/it]
|
996 |
9%|▉ | 994/11346 [27:48<4:49:04, 1.68s/it]
|
997 |
9%|▉ | 995/11346 [27:50<4:49:10, 1.68s/it]
|
998 |
9%|▉ | 996/11346 [27:51<4:49:07, 1.68s/it]
|
999 |
9%|▉ | 997/11346 [27:53<4:49:17, 1.68s/it]
|
1000 |
9%|▉ | 998/11346 [27:55<4:49:20, 1.68s/it]
|
1001 |
9%|▉ | 999/11346 [27:56<4:49:15, 1.68s/it]
|
1002 |
9%|▉ | 1000/11346 [27:58<4:49:43, 1.68s/it]
|
1003 |
|
1004 |
9%|▉ | 1000/11346 [27:58<4:49:43, 1.68s/it][INFO|trainer.py:3662] 2024-06-04 01:29:49,519 >> ***** Running Evaluation *****
|
|
|
|
|
|
|
|
|
|
|
|
|
1005 |
0%| | 0/39 [00:00<?, ?it/s][A
|
|
|
1006 |
5%|▌ | 2/39 [00:02<00:54, 1.48s/it][A
|
|
|
1007 |
8%|▊ | 3/39 [00:05<01:15, 2.10s/it][A
|
|
|
1008 |
10%|█ | 4/39 [00:08<01:24, 2.42s/it][A
|
|
|
1009 |
13%|█▎ | 5/39 [00:11<01:28, 2.61s/it][A
|
|
|
1010 |
15%|█▌ | 6/39 [00:14<01:29, 2.72s/it][A
|
|
|
1011 |
18%|█▊ | 7/39 [00:17<01:29, 2.80s/it][A
|
|
|
1012 |
21%|██ | 8/39 [00:20<01:28, 2.85s/it][A
|
|
|
1013 |
23%|██▎ | 9/39 [00:23<01:26, 2.88s/it][A
|
|
|
1014 |
26%|██▌ | 10/39 [00:26<01:24, 2.91s/it][A
|
|
|
1015 |
28%|██▊ | 11/39 [00:29<01:21, 2.92s/it][A
|
|
|
1016 |
31%|███ | 12/39 [00:32<01:19, 2.93s/it][A
|
|
|
1017 |
33%|███▎ | 13/39 [00:35<01:16, 2.94s/it][A
|
|
|
1018 |
36%|███▌ | 14/39 [00:38<01:13, 2.95s/it][A
|
|
|
1019 |
38%|███▊ | 15/39 [00:41<01:10, 2.95s/it][A
|
|
|
1020 |
41%|████ | 16/39 [00:44<01:07, 2.95s/it][A
|
|
|
1021 |
44%|████▎ | 17/39 [00:47<01:04, 2.95s/it][A
|
|
|
1022 |
46%|████▌ | 18/39 [00:50<01:01, 2.94s/it][A
|
|
|
1023 |
49%|████▊ | 19/39 [00:53<00:58, 2.94s/it][A
|
|
|
1024 |
51%|█████▏ | 20/39 [00:56<00:55, 2.94s/it][A
|
|
|
1025 |
54%|█████▍ | 21/39 [00:59<00:52, 2.94s/it][A
|
|
|
1026 |
56%|█████▋ | 22/39 [01:02<00:50, 2.94s/it][A
|
|
|
1027 |
59%|█████▉ | 23/39 [01:04<00:47, 2.94s/it][A
|
|
|
1028 |
62%|██████▏ | 24/39 [01:07<00:44, 2.94s/it][A
|
|
|
1029 |
64%|██████▍ | 25/39 [01:10<00:41, 2.94s/it][A
|
|
|
1030 |
67%|██████▋ | 26/39 [01:13<00:38, 2.94s/it][A
|
|
|
1031 |
69%|██████▉ | 27/39 [01:16<00:35, 2.94s/it][A
|
|
|
1032 |
72%|███████▏ | 28/39 [01:19<00:32, 2.94s/it][A
|
|
|
1033 |
74%|███████▍ | 29/39 [01:22<00:29, 2.94s/it][A
|
|
|
1034 |
77%|███████▋ | 30/39 [01:25<00:26, 2.94s/it][A
|
|
|
1035 |
79%|███████▉ | 31/39 [01:28<00:23, 2.94s/it][A
|
|
|
1036 |
82%|████████▏ | 32/39 [01:31<00:20, 2.95s/it][A
|
|
|
1037 |
85%|████████▍ | 33/39 [01:34<00:17, 2.95s/it][A
|
|
|
1038 |
87%|████████▋ | 34/39 [01:37<00:14, 2.96s/it][A
|
|
|
1039 |
90%|████████▉ | 35/39 [01:40<00:11, 2.96s/it][A
|
|
|
1040 |
92%|█████████▏| 36/39 [01:43<00:08, 2.96s/it][A
|
|
|
1041 |
95%|█████████▍| 37/39 [01:46<00:05, 2.96s/it][A
|
|
|
1042 |
97%|█████████▋| 38/39 [01:49<00:02, 2.93s/it][A
|
|
|
|
|
1043 |
|
1044 |
|
|
|
1045 |
9%|▉ | 1000/11346 [30:07<4:49:43, 1.68s/it]
|
|
|
1046 |
[A[INFO|trainer.py:3353] 2024-06-04 01:31:58,493 >> Saving model checkpoint to ./training_outputs_job_116987_1_04-06_01-01/checkpoint-1000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-06-04 01:01:39.001875: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
2 |
+
2024-06-04 01:01:39.054364: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
|
3 |
+
2024-06-04 01:01:39.054415: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
|
4 |
+
2024-06-04 01:01:39.055904: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
|
5 |
+
2024-06-04 01:01:39.063872: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
|
6 |
+
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
|
7 |
+
2024-06-04 01:01:41.050561: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
|
8 |
+
06/04/2024 01:01:46 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 6, distributed training: False, 16-bits training: False
|
9 |
+
06/04/2024 01:01:46 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
|
10 |
+
_n_gpu=6,
|
11 |
+
accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None},
|
12 |
+
adafactor=False,
|
13 |
+
adam_beta1=0.9,
|
14 |
+
adam_beta2=0.999,
|
15 |
+
adam_epsilon=1e-08,
|
16 |
+
auto_find_batch_size=False,
|
17 |
+
bf16=False,
|
18 |
+
bf16_full_eval=False,
|
19 |
+
data_seed=None,
|
20 |
+
dataloader_drop_last=False,
|
21 |
+
dataloader_num_workers=0,
|
22 |
+
dataloader_persistent_workers=False,
|
23 |
+
dataloader_pin_memory=True,
|
24 |
+
dataloader_prefetch_factor=None,
|
25 |
+
ddp_backend=None,
|
26 |
+
ddp_broadcast_buffers=None,
|
27 |
+
ddp_bucket_cap_mb=None,
|
28 |
+
ddp_find_unused_parameters=None,
|
29 |
+
ddp_timeout=1800,
|
30 |
+
debug=[],
|
31 |
+
deepspeed=None,
|
32 |
+
disable_tqdm=False,
|
33 |
+
dispatch_batches=None,
|
34 |
+
do_eval=True,
|
35 |
+
do_predict=False,
|
36 |
+
do_train=True,
|
37 |
+
eval_accumulation_steps=None,
|
38 |
+
eval_delay=0,
|
39 |
+
eval_do_concat_batches=True,
|
40 |
+
eval_steps=1000,
|
41 |
+
eval_strategy=steps,
|
42 |
+
evaluation_strategy=None,
|
43 |
+
fp16=False,
|
44 |
+
fp16_backend=auto,
|
45 |
+
fp16_full_eval=False,
|
46 |
+
fp16_opt_level=O1,
|
47 |
+
fsdp=[],
|
48 |
+
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
|
49 |
+
fsdp_min_num_params=0,
|
50 |
+
fsdp_transformer_layer_cls_to_wrap=None,
|
51 |
+
full_determinism=False,
|
52 |
+
gradient_accumulation_steps=1,
|
53 |
+
gradient_checkpointing=False,
|
54 |
+
gradient_checkpointing_kwargs=None,
|
55 |
+
greater_is_better=None,
|
56 |
+
group_by_length=False,
|
57 |
+
half_precision_backend=auto,
|
58 |
+
hub_always_push=False,
|
59 |
+
hub_model_id=DorinSht/recreate_llama_68M_vanilla,
|
60 |
+
hub_private_repo=False,
|
61 |
+
hub_strategy=every_save,
|
62 |
+
hub_token=<HUB_TOKEN>,
|
63 |
+
ignore_data_skip=False,
|
64 |
+
include_inputs_for_metrics=False,
|
65 |
+
include_num_input_tokens_seen=False,
|
66 |
+
include_tokens_per_second=False,
|
67 |
+
jit_mode_eval=False,
|
68 |
+
label_names=None,
|
69 |
+
label_smoothing_factor=0.0,
|
70 |
+
learning_rate=0.0001,
|
71 |
+
length_column_name=length,
|
72 |
+
load_best_model_at_end=False,
|
73 |
+
local_rank=0,
|
74 |
+
log_level=passive,
|
75 |
+
log_level_replica=warning,
|
76 |
+
log_on_each_node=True,
|
77 |
+
logging_dir=./training_outputs_job_116987_1_04-06_01-01,
|
78 |
+
logging_first_step=False,
|
79 |
+
logging_nan_inf_filter=True,
|
80 |
+
logging_steps=500,
|
81 |
+
logging_strategy=steps,
|
82 |
+
lr_scheduler_kwargs={},
|
83 |
+
lr_scheduler_type=linear,
|
84 |
+
max_grad_norm=1.0,
|
85 |
+
max_steps=-1,
|
86 |
+
metric_for_best_model=None,
|
87 |
+
mp_parameters=,
|
88 |
+
neftune_noise_alpha=None,
|
89 |
+
no_cuda=False,
|
90 |
+
num_train_epochs=3.0,
|
91 |
+
optim=adamw_torch,
|
92 |
+
optim_args=None,
|
93 |
+
optim_target_modules=None,
|
94 |
+
output_dir=./training_outputs_job_116987_1_04-06_01-01,
|
95 |
+
overwrite_output_dir=True,
|
96 |
+
past_index=-1,
|
97 |
+
per_device_eval_batch_size=8,
|
98 |
+
per_device_train_batch_size=4,
|
99 |
+
prediction_loss_only=False,
|
100 |
+
push_to_hub=True,
|
101 |
+
push_to_hub_model_id=None,
|
102 |
+
push_to_hub_organization=None,
|
103 |
+
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
|
104 |
+
ray_scope=last,
|
105 |
+
remove_unused_columns=True,
|
106 |
+
report_to=['tensorboard'],
|
107 |
+
restore_callback_states_from_checkpoint=False,
|
108 |
+
resume_from_checkpoint=None,
|
109 |
+
run_name=/home/dshteyma/target_draft_coupling_code/target_draft_training/training_outputs,
|
110 |
+
save_on_each_node=False,
|
111 |
+
save_only_model=False,
|
112 |
+
save_safetensors=True,
|
113 |
+
save_steps=1000,
|
114 |
+
save_strategy=steps,
|
115 |
+
save_total_limit=None,
|
116 |
+
seed=42,
|
117 |
+
skip_memory_metrics=True,
|
118 |
+
split_batches=None,
|
119 |
+
tf32=None,
|
120 |
+
torch_compile=False,
|
121 |
+
torch_compile_backend=None,
|
122 |
+
torch_compile_mode=None,
|
123 |
+
torchdynamo=None,
|
124 |
+
tpu_metrics_debug=False,
|
125 |
+
tpu_num_cores=None,
|
126 |
+
use_cpu=False,
|
127 |
+
use_ipex=False,
|
128 |
+
use_legacy_prediction_loop=False,
|
129 |
+
use_mps_device=False,
|
130 |
+
warmup_ratio=0.05,
|
131 |
+
warmup_steps=0,
|
132 |
+
weight_decay=0.01,
|
133 |
+
)
|
134 |
+
06/04/2024 01:01:47 - INFO - datasets.builder - Using custom data configuration default-afe4b27d28cbdcb1
|
135 |
+
Using custom data configuration default-afe4b27d28cbdcb1
|
136 |
+
Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
|
137 |
+
06/04/2024 01:01:47 - INFO - datasets.info - Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
|
138 |
+
06/04/2024 01:01:47 - INFO - datasets.builder - Overwrite dataset info from restored data version if exists.
|
139 |
+
Overwrite dataset info from restored data version if exists.
|
140 |
+
Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
|
141 |
+
06/04/2024 01:01:47 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
|
142 |
+
06/04/2024 01:01:47 - INFO - datasets.builder - Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
|
143 |
+
Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
|
144 |
+
Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
|
145 |
+
06/04/2024 01:01:47 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
|
146 |
+
06/04/2024 01:01:47 - INFO - datasets.builder - Using custom data configuration default-afe4b27d28cbdcb1
|
147 |
+
Using custom data configuration default-afe4b27d28cbdcb1
|
148 |
+
Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
|
149 |
+
06/04/2024 01:01:47 - INFO - datasets.info - Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
|
150 |
+
06/04/2024 01:01:47 - INFO - datasets.builder - Overwrite dataset info from restored data version if exists.
|
151 |
+
Overwrite dataset info from restored data version if exists.
|
152 |
+
Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
|
153 |
+
06/04/2024 01:01:47 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
|
154 |
+
06/04/2024 01:01:47 - INFO - datasets.builder - Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
|
155 |
+
Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
|
156 |
+
Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
|
157 |
+
06/04/2024 01:01:47 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
|
158 |
+
06/04/2024 01:01:48 - INFO - datasets.builder - Using custom data configuration default-afe4b27d28cbdcb1
|
159 |
+
Using custom data configuration default-afe4b27d28cbdcb1
|
160 |
+
Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
|
161 |
+
06/04/2024 01:01:48 - INFO - datasets.info - Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
|
162 |
+
06/04/2024 01:01:48 - INFO - datasets.builder - Overwrite dataset info from restored data version if exists.
|
163 |
+
Overwrite dataset info from restored data version if exists.
|
164 |
+
Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
|
165 |
+
06/04/2024 01:01:48 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
|
166 |
+
06/04/2024 01:01:48 - INFO - datasets.builder - Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
|
167 |
+
Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
|
168 |
+
Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
|
169 |
+
06/04/2024 01:01:48 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
|
170 |
+
[INFO|configuration_utils.py:726] 2024-06-04 01:01:48,499 >> loading configuration file config.json from cache at /home/dshteyma/.cache/huggingface/hub/models--JackFram--llama-68m/snapshots/964a5d77df908b69f8d6476fb70e940425b04cb5/config.json
|
171 |
+
[INFO|configuration_utils.py:789] 2024-06-04 01:01:48,501 >> Model config LlamaConfig {
|
172 |
+
"_name_or_path": "JackFram/llama-68m",
|
173 |
+
"architectures": [
|
174 |
+
"LlamaForCausalLM"
|
175 |
+
],
|
176 |
+
"attention_bias": false,
|
177 |
+
"attention_dropout": 0.0,
|
178 |
+
"bos_token_id": 0,
|
179 |
+
"eos_token_id": 2,
|
180 |
+
"hidden_act": "silu",
|
181 |
+
"hidden_size": 768,
|
182 |
+
"initializer_range": 0.02,
|
183 |
+
"intermediate_size": 3072,
|
184 |
+
"max_position_embeddings": 2048,
|
185 |
+
"model_type": "llama",
|
186 |
+
"num_attention_heads": 12,
|
187 |
+
"num_hidden_layers": 2,
|
188 |
+
"num_key_value_heads": 12,
|
189 |
+
"pad_token_id": 1,
|
190 |
+
"pretraining_tp": 1,
|
191 |
+
"rms_norm_eps": 1e-06,
|
192 |
+
"rope_scaling": null,
|
193 |
+
"rope_theta": 10000.0,
|
194 |
+
"tie_word_embeddings": false,
|
195 |
+
"torch_dtype": "float32",
|
196 |
+
"transformers_version": "4.41.0.dev0",
|
197 |
+
"use_cache": true,
|
198 |
+
"vocab_size": 32000
|
199 |
+
}
|
200 |
+
|
201 |
+
[INFO|tokenization_utils_base.py:2102] 2024-06-04 01:01:48,634 >> loading file tokenizer.model from cache at /home/dshteyma/.cache/huggingface/hub/models--JackFram--llama-68m/snapshots/964a5d77df908b69f8d6476fb70e940425b04cb5/tokenizer.model
|
202 |
+
[INFO|tokenization_utils_base.py:2102] 2024-06-04 01:01:48,635 >> loading file tokenizer.json from cache at None
|
203 |
+
[INFO|tokenization_utils_base.py:2102] 2024-06-04 01:01:48,635 >> loading file added_tokens.json from cache at None
|
204 |
+
[INFO|tokenization_utils_base.py:2102] 2024-06-04 01:01:48,635 >> loading file special_tokens_map.json from cache at /home/dshteyma/.cache/huggingface/hub/models--JackFram--llama-68m/snapshots/964a5d77df908b69f8d6476fb70e940425b04cb5/special_tokens_map.json
|
205 |
+
[INFO|tokenization_utils_base.py:2102] 2024-06-04 01:01:48,635 >> loading file tokenizer_config.json from cache at /home/dshteyma/.cache/huggingface/hub/models--JackFram--llama-68m/snapshots/964a5d77df908b69f8d6476fb70e940425b04cb5/tokenizer_config.json
|
206 |
+
[WARNING|logging.py:329] 2024-06-04 01:01:48,636 >> You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.LlamaTokenizer'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565
|
207 |
+
[WARNING|logging.py:329] 2024-06-04 01:01:48,716 >> You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565
|
208 |
+
[INFO|configuration_utils.py:936] 2024-06-04 01:01:49,214 >> Generate config GenerationConfig {
|
209 |
+
"bos_token_id": 0,
|
210 |
+
"eos_token_id": 2,
|
211 |
+
"pad_token_id": 1
|
212 |
+
}
|
213 |
+
|
214 |
+
06/04/2024 01:01:50 - INFO - __main__ - Training new model from scratch - Total size=64.88M params
|
215 |
+
06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-988d048fea8d2473.arrow
|
216 |
+
Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-988d048fea8d2473.arrow
|
217 |
+
06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-4e281c930893bca9.arrow
|
218 |
+
Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-4e281c930893bca9.arrow
|
219 |
+
06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-3fe350bccdda6078.arrow
|
220 |
+
Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-3fe350bccdda6078.arrow
|
221 |
+
06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-35d09b588a0c62b9.arrow
|
222 |
+
Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-35d09b588a0c62b9.arrow
|
223 |
+
06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-4e5279ee31a5d8d3.arrow
|
224 |
+
Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-4e5279ee31a5d8d3.arrow
|
225 |
+
06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-63d56456928edd43.arrow
|
226 |
+
Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-63d56456928edd43.arrow
|
227 |
+
06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-6a784a78d9818240.arrow
|
228 |
+
Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-6a784a78d9818240.arrow
|
229 |
+
06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-46540f58a00a92bf.arrow
|
230 |
+
Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-46540f58a00a92bf.arrow
|
231 |
+
06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-73605724efaea9d2.arrow
|
232 |
+
Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-73605724efaea9d2.arrow
|
233 |
+
06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-83d3df87e1b82021.arrow
|
234 |
+
Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-83d3df87e1b82021.arrow
|
235 |
+
06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-efdbb02491aa6344.arrow
|
236 |
+
Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-efdbb02491aa6344.arrow
|
237 |
+
06/04/2024 01:01:50 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-0cf2ae38fef927f3.arrow
|
238 |
+
Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-0cf2ae38fef927f3.arrow
|
239 |
+
06/04/2024 01:01:50 - WARNING - accelerate.utils.other - Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
|
240 |
+
[INFO|trainer.py:2068] 2024-06-04 01:01:51,038 >> ***** Running training *****
|
241 |
+
[INFO|trainer.py:2069] 2024-06-04 01:01:51,038 >> Num examples = 90,745
|
242 |
+
[INFO|trainer.py:2070] 2024-06-04 01:01:51,038 >> Num Epochs = 3
|
243 |
+
[INFO|trainer.py:2071] 2024-06-04 01:01:51,038 >> Instantaneous batch size per device = 4
|
244 |
+
[INFO|trainer.py:2073] 2024-06-04 01:01:51,038 >> Training with DataParallel so batch size has been adjusted to: 24
|
245 |
+
[INFO|trainer.py:2074] 2024-06-04 01:01:51,038 >> Total train batch size (w. parallel, distributed & accumulation) = 24
|
246 |
+
[INFO|trainer.py:2075] 2024-06-04 01:01:51,038 >> Gradient Accumulation steps = 1
|
247 |
+
[INFO|trainer.py:2076] 2024-06-04 01:01:51,038 >> Total optimization steps = 11,346
|
248 |
+
[INFO|trainer.py:2077] 2024-06-04 01:01:51,038 >> Number of trainable parameters = 68,030,208
|
249 |
+
|
250 |
0%| | 0/11346 [00:00<?, ?it/s]/home/dshteyma/miniconda3/lib/python3.9/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.
|
251 |
+
warnings.warn('Was asked to gather along dimension 0, but all '
|
252 |
+
|
253 |
0%| | 1/11346 [00:04<15:05:26, 4.79s/it]
|
254 |
0%| | 2/11346 [00:06<9:21:06, 2.97s/it]
|
255 |
0%| | 3/11346 [00:08<7:30:15, 2.38s/it]
|
256 |
0%| | 4/11346 [00:09<6:37:25, 2.10s/it]
|
257 |
0%| | 5/11346 [00:11<6:07:24, 1.94s/it]
|
258 |
0%| | 6/11346 [00:13<5:48:09, 1.84s/it]
|
259 |
0%| | 7/11346 [00:14<5:35:53, 1.78s/it]
|
260 |
0%| | 8/11346 [00:16<5:30:15, 1.75s/it]
|
261 |
0%| | 9/11346 [00:18<5:24:26, 1.72s/it]
|
262 |
0%| | 10/11346 [00:19<5:20:12, 1.69s/it]
|
263 |
0%| | 11/11346 [00:21<5:19:03, 1.69s/it]
|
264 |
0%| | 12/11346 [00:23<5:16:19, 1.67s/it]
|
265 |
0%| | 13/11346 [00:24<5:14:47, 1.67s/it]
|
266 |
0%| | 14/11346 [00:26<5:15:45, 1.67s/it]
|
267 |
0%| | 15/11346 [00:28<5:15:55, 1.67s/it]
|
268 |
0%| | 16/11346 [00:29<5:16:01, 1.67s/it]
|
269 |
0%| | 17/11346 [00:31<5:14:59, 1.67s/it]
|
270 |
0%| | 18/11346 [00:33<5:13:43, 1.66s/it]
|
271 |
0%| | 19/11346 [00:34<5:12:42, 1.66s/it]
|
272 |
0%| | 20/11346 [00:36<5:11:52, 1.65s/it]
|
273 |
0%| | 21/11346 [00:37<5:11:11, 1.65s/it]
|
274 |
0%| | 22/11346 [00:39<5:10:54, 1.65s/it]
|
275 |
0%| | 23/11346 [00:41<5:10:37, 1.65s/it]
|
276 |
0%| | 24/11346 [00:42<5:10:31, 1.65s/it]
|
277 |
0%| | 25/11346 [00:44<5:10:24, 1.65s/it]
|
278 |
0%| | 26/11346 [00:46<5:10:12, 1.64s/it]
|
279 |
0%| | 27/11346 [00:47<5:11:36, 1.65s/it]
|
280 |
0%| | 28/11346 [00:49<5:11:16, 1.65s/it]
|
281 |
0%| | 29/11346 [00:51<5:10:53, 1.65s/it]
|
282 |
0%| | 30/11346 [00:52<5:10:39, 1.65s/it]
|
283 |
0%| | 31/11346 [00:54<5:10:26, 1.65s/it]
|
284 |
0%| | 32/11346 [00:56<5:10:17, 1.65s/it]
|
285 |
0%| | 33/11346 [00:57<5:10:09, 1.64s/it]
|
286 |
0%| | 34/11346 [00:59<5:10:07, 1.64s/it]
|
287 |
0%| | 35/11346 [01:01<5:09:56, 1.64s/it]
|
288 |
0%| | 36/11346 [01:02<5:09:53, 1.64s/it]
|
289 |
0%| | 37/11346 [01:04<5:09:51, 1.64s/it]
|
290 |
0%| | 38/11346 [01:05<5:09:44, 1.64s/it]
|
291 |
0%| | 39/11346 [01:07<5:09:40, 1.64s/it]
|
292 |
0%| | 40/11346 [01:09<5:09:35, 1.64s/it]
|
293 |
0%| | 41/11346 [01:10<5:09:32, 1.64s/it]
|
294 |
0%| | 42/11346 [01:12<5:09:25, 1.64s/it]
|
295 |
0%| | 43/11346 [01:14<5:09:27, 1.64s/it]
|
296 |
0%| | 44/11346 [01:15<5:09:44, 1.64s/it]
|
297 |
0%| | 45/11346 [01:17<5:09:45, 1.64s/it]
|
298 |
0%| | 46/11346 [01:19<5:09:40, 1.64s/it]
|
299 |
0%| | 47/11346 [01:20<5:09:36, 1.64s/it]
|
300 |
0%| | 48/11346 [01:22<5:09:32, 1.64s/it]
|
301 |
0%| | 49/11346 [01:24<5:09:30, 1.64s/it]
|
302 |
0%| | 50/11346 [01:25<5:09:30, 1.64s/it]
|
303 |
0%| | 51/11346 [01:27<5:09:30, 1.64s/it]
|
304 |
0%| | 52/11346 [01:28<5:09:24, 1.64s/it]
|
305 |
0%| | 53/11346 [01:30<5:09:22, 1.64s/it]
|
306 |
0%| | 54/11346 [01:32<5:09:22, 1.64s/it]
|
307 |
0%| | 55/11346 [01:33<5:09:26, 1.64s/it]
|
308 |
0%| | 56/11346 [01:35<5:09:35, 1.65s/it]
|
309 |
1%| | 57/11346 [01:37<5:09:41, 1.65s/it]
|
310 |
1%| | 58/11346 [01:38<5:09:36, 1.65s/it]
|
311 |
1%| | 59/11346 [01:40<5:09:28, 1.65s/it]
|
312 |
1%| | 60/11346 [01:42<5:09:21, 1.64s/it]
|
313 |
1%| | 61/11346 [01:43<5:09:45, 1.65s/it]
|
314 |
1%| | 62/11346 [01:45<5:09:30, 1.65s/it]
|
315 |
1%| | 63/11346 [01:47<5:09:21, 1.65s/it]
|
316 |
1%| | 64/11346 [01:48<5:09:16, 1.64s/it]
|
317 |
1%| | 65/11346 [01:50<5:09:11, 1.64s/it]
|
318 |
1%| | 66/11346 [01:52<5:09:06, 1.64s/it]
|
319 |
1%| | 67/11346 [01:53<5:09:05, 1.64s/it]
|
320 |
1%| | 68/11346 [01:55<5:10:50, 1.65s/it]
|
321 |
1%| | 69/11346 [01:57<5:11:57, 1.66s/it]
|
322 |
1%| | 70/11346 [01:58<5:11:27, 1.66s/it]
|
323 |
1%| | 71/11346 [02:00<5:10:43, 1.65s/it]
|
324 |
1%| | 72/11346 [02:01<5:10:09, 1.65s/it]
|
325 |
1%| | 73/11346 [02:03<5:09:46, 1.65s/it]
|
326 |
1%| | 74/11346 [02:05<5:09:27, 1.65s/it]
|
327 |
1%| | 75/11346 [02:06<5:09:07, 1.65s/it]
|
328 |
1%| | 76/11346 [02:08<5:08:57, 1.64s/it]
|
329 |
1%| | 77/11346 [02:10<5:08:54, 1.64s/it]
|
330 |
1%| | 78/11346 [02:11<5:08:52, 1.64s/it]
|
331 |
1%| | 79/11346 [02:13<5:08:52, 1.64s/it]
|
332 |
1%| | 80/11346 [02:15<5:08:52, 1.64s/it]
|
333 |
1%| | 81/11346 [02:16<5:08:47, 1.64s/it]
|
334 |
1%| | 82/11346 [02:18<5:08:40, 1.64s/it]
|
335 |
1%| | 83/11346 [02:20<5:08:40, 1.64s/it]
|
336 |
1%| | 84/11346 [02:21<5:08:33, 1.64s/it]
|
337 |
1%| | 85/11346 [02:23<5:08:32, 1.64s/it]
|
338 |
1%| | 86/11346 [02:25<5:12:04, 1.66s/it]
|
339 |
1%| | 87/11346 [02:26<5:13:39, 1.67s/it]
|
340 |
1%| | 88/11346 [02:28<5:15:04, 1.68s/it]
|
341 |
1%| | 89/11346 [02:30<5:14:52, 1.68s/it]
|
342 |
1%| | 90/11346 [02:31<5:15:18, 1.68s/it]
|
343 |
1%| | 91/11346 [02:33<5:15:25, 1.68s/it]
|
344 |
1%| | 92/11346 [02:35<5:16:00, 1.68s/it]
|
345 |
1%| | 93/11346 [02:36<5:16:22, 1.69s/it]
|
346 |
1%| | 94/11346 [02:38<5:15:59, 1.68s/it]
|
347 |
1%| | 95/11346 [02:40<5:16:37, 1.69s/it]
|
348 |
1%| | 96/11346 [02:41<5:16:52, 1.69s/it]
|
349 |
1%| | 97/11346 [02:43<5:16:53, 1.69s/it]
|
350 |
1%| | 98/11346 [02:45<5:16:50, 1.69s/it]
|
351 |
1%| | 99/11346 [02:46<5:16:42, 1.69s/it]
|
352 |
1%| | 100/11346 [02:48<5:16:32, 1.69s/it]
|
353 |
1%| | 101/11346 [02:50<5:16:02, 1.69s/it]
|
354 |
1%| | 102/11346 [02:52<5:16:21, 1.69s/it]
|
355 |
1%| | 103/11346 [02:53<5:16:22, 1.69s/it]
|
356 |
1%| | 104/11346 [02:55<5:16:56, 1.69s/it]
|
357 |
1%| | 105/11346 [02:57<5:17:05, 1.69s/it]
|
358 |
1%| | 106/11346 [02:58<5:16:58, 1.69s/it]
|
359 |
1%| | 107/11346 [03:00<5:17:08, 1.69s/it]
|
360 |
1%| | 108/11346 [03:02<5:17:07, 1.69s/it]
|
361 |
1%| | 109/11346 [03:03<5:16:39, 1.69s/it]
|
362 |
1%| | 110/11346 [03:05<5:16:25, 1.69s/it]
|
363 |
1%| | 111/11346 [03:07<5:16:27, 1.69s/it]
|
364 |
1%| | 112/11346 [03:08<5:16:08, 1.69s/it]
|
365 |
1%| | 113/11346 [03:10<5:15:47, 1.69s/it]
|
366 |
1%| | 114/11346 [03:12<5:15:59, 1.69s/it]
|
367 |
1%| | 115/11346 [03:14<5:16:09, 1.69s/it]
|
368 |
1%| | 116/11346 [03:15<5:15:54, 1.69s/it]
|
369 |
1%| | 117/11346 [03:17<5:16:14, 1.69s/it]
|
370 |
1%| | 118/11346 [03:19<5:16:21, 1.69s/it]
|
371 |
1%| | 119/11346 [03:20<5:16:37, 1.69s/it]
|
372 |
1%| | 120/11346 [03:22<5:15:42, 1.69s/it]
|
373 |
1%| | 121/11346 [03:24<5:15:53, 1.69s/it]
|
374 |
1%| | 122/11346 [03:25<5:15:52, 1.69s/it]
|
375 |
1%| | 123/11346 [03:27<5:15:37, 1.69s/it]
|
376 |
1%| | 124/11346 [03:29<5:15:21, 1.69s/it]
|
377 |
1%| | 125/11346 [03:30<5:15:20, 1.69s/it]
|
378 |
1%| | 126/11346 [03:32<5:15:08, 1.69s/it]
|
379 |
1%| | 127/11346 [03:34<5:15:16, 1.69s/it]
|
380 |
1%| | 128/11346 [03:35<5:15:28, 1.69s/it]
|
381 |
1%| | 129/11346 [03:37<5:15:06, 1.69s/it]
|
382 |
1%| | 130/11346 [03:39<5:15:41, 1.69s/it]
|
383 |
1%| | 131/11346 [03:41<5:15:22, 1.69s/it]
|
384 |
1%| | 132/11346 [03:42<5:15:06, 1.69s/it]
|
385 |
1%| | 133/11346 [03:44<5:15:00, 1.69s/it]
|
386 |
1%| | 134/11346 [03:46<5:15:08, 1.69s/it]
|
387 |
1%| | 135/11346 [03:47<5:15:12, 1.69s/it]
|
388 |
1%| | 136/11346 [03:49<5:14:45, 1.68s/it]
|
389 |
1%| | 137/11346 [03:51<5:13:39, 1.68s/it]
|
390 |
1%| | 138/11346 [03:52<5:13:47, 1.68s/it]
|
391 |
1%| | 139/11346 [03:54<5:13:33, 1.68s/it]
|
392 |
1%| | 140/11346 [03:56<5:13:47, 1.68s/it]
|
393 |
1%| | 141/11346 [03:57<5:13:56, 1.68s/it]
|
394 |
1%|▏ | 142/11346 [03:59<5:14:16, 1.68s/it]
|
395 |
1%|▏ | 143/11346 [04:01<5:13:54, 1.68s/it]
|
396 |
1%|▏ | 144/11346 [04:02<5:13:57, 1.68s/it]
|
397 |
1%|▏ | 145/11346 [04:04<5:13:51, 1.68s/it]
|
398 |
1%|▏ | 146/11346 [04:06<5:14:21, 1.68s/it]
|
399 |
1%|▏ | 147/11346 [04:07<5:15:46, 1.69s/it]
|
400 |
1%|▏ | 148/11346 [04:09<5:16:13, 1.69s/it]
|
401 |
1%|▏ | 149/11346 [04:11<5:15:22, 1.69s/it]
|
402 |
1%|▏ | 150/11346 [04:13<5:16:59, 1.70s/it]
|
403 |
1%|▏ | 151/11346 [04:14<5:17:05, 1.70s/it]
|
404 |
1%|▏ | 152/11346 [04:16<5:16:55, 1.70s/it]
|
405 |
1%|▏ | 153/11346 [04:18<5:17:29, 1.70s/it]
|
406 |
1%|▏ | 154/11346 [04:19<5:17:43, 1.70s/it]
|
407 |
1%|▏ | 155/11346 [04:21<5:16:45, 1.70s/it]
|
408 |
1%|▏ | 156/11346 [04:23<5:17:07, 1.70s/it]
|
409 |
1%|▏ | 157/11346 [04:24<5:17:52, 1.70s/it]
|
410 |
1%|▏ | 158/11346 [04:26<5:16:59, 1.70s/it]
|
411 |
1%|▏ | 159/11346 [04:28<5:17:13, 1.70s/it]
|
412 |
1%|▏ | 160/11346 [04:30<5:17:42, 1.70s/it]
|
413 |
1%|▏ | 161/11346 [04:31<5:17:20, 1.70s/it]
|
414 |
1%|▏ | 162/11346 [04:33<5:16:54, 1.70s/it]
|
415 |
1%|▏ | 163/11346 [04:35<5:15:58, 1.70s/it]
|
416 |
1%|▏ | 164/11346 [04:36<5:16:33, 1.70s/it]
|
417 |
1%|▏ | 165/11346 [04:38<5:16:46, 1.70s/it]
|
418 |
1%|▏ | 166/11346 [04:40<5:16:18, 1.70s/it]
|
419 |
1%|▏ | 167/11346 [04:41<5:15:53, 1.70s/it]
|
420 |
1%|▏ | 168/11346 [04:43<5:15:33, 1.69s/it]
|
421 |
1%|▏ | 169/11346 [04:45<5:16:19, 1.70s/it]
|
422 |
1%|▏ | 170/11346 [04:47<5:15:30, 1.69s/it]
|
423 |
2%|▏ | 171/11346 [04:48<5:15:01, 1.69s/it]
|
424 |
2%|▏ | 172/11346 [04:50<5:15:21, 1.69s/it]
|
425 |
2%|▏ | 173/11346 [04:52<5:14:48, 1.69s/it]
|
426 |
2%|▏ | 174/11346 [04:53<5:16:03, 1.70s/it]
|
427 |
2%|▏ | 175/11346 [04:55<5:15:36, 1.70s/it]
|
428 |
2%|▏ | 176/11346 [04:57<5:15:10, 1.69s/it]
|
429 |
2%|▏ | 177/11346 [04:58<5:15:37, 1.70s/it]
|
430 |
2%|▏ | 178/11346 [05:00<5:15:06, 1.69s/it]
|
431 |
2%|▏ | 179/11346 [05:02<5:14:42, 1.69s/it]
|
432 |
2%|▏ | 180/11346 [05:03<5:15:07, 1.69s/it]
|
433 |
2%|▏ | 181/11346 [05:05<5:15:02, 1.69s/it]
|
434 |
2%|▏ | 182/11346 [05:07<5:14:59, 1.69s/it]
|
435 |
2%|▏ | 183/11346 [05:09<5:14:40, 1.69s/it]
|
436 |
2%|▏ | 184/11346 [05:10<5:15:53, 1.70s/it]
|
437 |
2%|▏ | 185/11346 [05:12<5:15:11, 1.69s/it]
|
438 |
2%|▏ | 186/11346 [05:14<5:14:53, 1.69s/it]
|
439 |
2%|▏ | 187/11346 [05:15<5:15:43, 1.70s/it]
|
440 |
2%|▏ | 188/11346 [05:17<5:15:29, 1.70s/it]
|
441 |
2%|▏ | 189/11346 [05:19<5:15:17, 1.70s/it]
|
442 |
2%|▏ | 190/11346 [05:20<5:15:03, 1.69s/it]
|
443 |
2%|▏ | 191/11346 [05:22<5:14:08, 1.69s/it]
|
444 |
2%|▏ | 192/11346 [05:24<5:14:18, 1.69s/it]
|
445 |
2%|▏ | 193/11346 [05:25<5:14:10, 1.69s/it]
|
446 |
2%|▏ | 194/11346 [05:27<5:13:51, 1.69s/it]
|
447 |
2%|▏ | 195/11346 [05:29<5:13:31, 1.69s/it]
|
448 |
2%|▏ | 196/11346 [05:31<5:14:23, 1.69s/it]
|
449 |
2%|▏ | 197/11346 [05:32<5:15:01, 1.70s/it]
|
450 |
2%|▏ | 198/11346 [05:34<5:15:03, 1.70s/it]
|
451 |
2%|▏ | 199/11346 [05:36<5:14:37, 1.69s/it]
|
452 |
2%|▏ | 200/11346 [05:37<5:14:54, 1.70s/it]
|
453 |
2%|▏ | 201/11346 [05:39<5:14:20, 1.69s/it]
|
454 |
2%|▏ | 202/11346 [05:41<5:14:27, 1.69s/it]
|
455 |
2%|▏ | 203/11346 [05:42<5:13:49, 1.69s/it]
|
456 |
2%|▏ | 204/11346 [05:44<5:13:47, 1.69s/it]
|
457 |
2%|▏ | 205/11346 [05:46<5:13:39, 1.69s/it]
|
458 |
2%|▏ | 206/11346 [05:47<5:13:03, 1.69s/it]
|
459 |
2%|▏ | 207/11346 [05:49<5:13:46, 1.69s/it]
|
460 |
2%|▏ | 208/11346 [05:51<5:13:31, 1.69s/it]
|
461 |
2%|▏ | 209/11346 [05:53<5:13:34, 1.69s/it]
|
462 |
2%|▏ | 210/11346 [05:54<5:13:27, 1.69s/it]
|
463 |
2%|▏ | 211/11346 [05:56<5:12:29, 1.68s/it]
|
464 |
2%|▏ | 212/11346 [05:58<5:13:18, 1.69s/it]
|
465 |
2%|▏ | 213/11346 [05:59<5:12:47, 1.69s/it]
|
466 |
2%|▏ | 214/11346 [06:01<5:12:54, 1.69s/it]
|
467 |
2%|▏ | 215/11346 [06:03<5:12:27, 1.68s/it]
|
468 |
2%|▏ | 216/11346 [06:04<5:13:25, 1.69s/it]
|
469 |
2%|▏ | 217/11346 [06:06<5:13:28, 1.69s/it]
|
470 |
2%|▏ | 218/11346 [06:08<5:13:45, 1.69s/it]
|
471 |
2%|▏ | 219/11346 [06:09<5:12:47, 1.69s/it]
|
472 |
2%|▏ | 220/11346 [06:11<5:13:05, 1.69s/it]
|
473 |
2%|▏ | 221/11346 [06:13<5:13:41, 1.69s/it]
|
474 |
2%|▏ | 222/11346 [06:14<5:13:08, 1.69s/it]
|
475 |
2%|▏ | 223/11346 [06:16<5:12:37, 1.69s/it]
|
476 |
2%|▏ | 224/11346 [06:18<5:12:56, 1.69s/it]
|
477 |
2%|▏ | 225/11346 [06:20<5:12:02, 1.68s/it]
|
478 |
2%|▏ | 226/11346 [06:21<5:12:05, 1.68s/it]
|
479 |
2%|▏ | 227/11346 [06:23<5:13:03, 1.69s/it]
|
480 |
2%|▏ | 228/11346 [06:25<5:12:56, 1.69s/it]
|
481 |
2%|▏ | 229/11346 [06:26<5:12:24, 1.69s/it]
|
482 |
2%|▏ | 230/11346 [06:28<5:12:29, 1.69s/it]
|
483 |
2%|▏ | 231/11346 [06:30<5:12:28, 1.69s/it]
|
484 |
2%|▏ | 232/11346 [06:31<5:12:35, 1.69s/it]
|
485 |
2%|▏ | 233/11346 [06:33<5:13:07, 1.69s/it]
|
486 |
2%|▏ | 234/11346 [06:35<5:12:34, 1.69s/it]
|
487 |
2%|▏ | 235/11346 [06:36<5:12:19, 1.69s/it]
|
488 |
2%|▏ | 236/11346 [06:38<5:12:52, 1.69s/it]
|
489 |
2%|▏ | 237/11346 [06:40<5:12:53, 1.69s/it]
|
490 |
2%|▏ | 238/11346 [06:41<5:13:25, 1.69s/it]
|
491 |
2%|▏ | 239/11346 [06:43<5:13:20, 1.69s/it]
|
492 |
2%|▏ | 240/11346 [06:45<5:11:49, 1.68s/it]
|
493 |
2%|▏ | 241/11346 [06:47<5:12:48, 1.69s/it]
|
494 |
2%|▏ | 242/11346 [06:48<5:12:47, 1.69s/it]
|
495 |
2%|▏ | 243/11346 [06:50<5:13:03, 1.69s/it]
|
496 |
2%|▏ | 244/11346 [06:52<5:13:03, 1.69s/it]
|
497 |
2%|▏ | 245/11346 [06:53<5:12:45, 1.69s/it]
|
498 |
2%|▏ | 246/11346 [06:55<5:12:53, 1.69s/it]
|
499 |
2%|▏ | 247/11346 [06:57<5:12:42, 1.69s/it]
|
500 |
2%|▏ | 248/11346 [06:58<5:11:35, 1.68s/it]
|
501 |
2%|▏ | 249/11346 [07:00<5:11:17, 1.68s/it]
|
502 |
2%|▏ | 250/11346 [07:02<5:11:09, 1.68s/it]
|
503 |
2%|▏ | 251/11346 [07:03<5:11:38, 1.69s/it]
|
504 |
2%|▏ | 252/11346 [07:05<5:11:13, 1.68s/it]
|
505 |
2%|▏ | 253/11346 [07:07<5:11:38, 1.69s/it]
|
506 |
2%|▏ | 254/11346 [07:08<5:10:30, 1.68s/it]
|
507 |
2%|▏ | 255/11346 [07:10<5:10:14, 1.68s/it]
|
508 |
2%|▏ | 256/11346 [07:12<5:10:15, 1.68s/it]
|
509 |
2%|▏ | 257/11346 [07:13<5:09:47, 1.68s/it]
|
510 |
2%|▏ | 258/11346 [07:15<5:10:30, 1.68s/it]
|
511 |
2%|▏ | 259/11346 [07:17<5:11:11, 1.68s/it]
|
512 |
2%|▏ | 260/11346 [07:19<5:10:54, 1.68s/it]
|
513 |
2%|▏ | 261/11346 [07:20<5:10:47, 1.68s/it]
|
514 |
2%|▏ | 262/11346 [07:22<5:10:19, 1.68s/it]
|
515 |
2%|▏ | 263/11346 [07:24<5:10:42, 1.68s/it]
|
516 |
2%|▏ | 264/11346 [07:25<5:10:37, 1.68s/it]
|
517 |
2%|▏ | 265/11346 [07:27<5:10:42, 1.68s/it]
|
518 |
2%|▏ | 266/11346 [07:29<5:11:00, 1.68s/it]
|
519 |
2%|▏ | 267/11346 [07:30<5:11:00, 1.68s/it]
|
520 |
2%|▏ | 268/11346 [07:32<5:11:15, 1.69s/it]
|
521 |
2%|▏ | 269/11346 [07:34<5:10:59, 1.68s/it]
|
522 |
2%|▏ | 270/11346 [07:35<5:11:20, 1.69s/it]
|
523 |
2%|▏ | 271/11346 [07:37<5:11:27, 1.69s/it]
|
524 |
2%|▏ | 272/11346 [07:39<5:11:38, 1.69s/it]
|
525 |
2%|▏ | 273/11346 [07:40<5:11:37, 1.69s/it]
|
526 |
2%|▏ | 274/11346 [07:42<5:11:42, 1.69s/it]
|
527 |
2%|▏ | 275/11346 [07:44<5:11:02, 1.69s/it]
|
528 |
2%|▏ | 276/11346 [07:46<5:10:47, 1.68s/it]
|
529 |
2%|▏ | 277/11346 [07:47<5:11:04, 1.69s/it]
|
530 |
2%|▏ | 278/11346 [07:49<5:11:01, 1.69s/it]
|
531 |
2%|▏ | 279/11346 [07:51<5:10:57, 1.69s/it]
|
532 |
2%|▏ | 280/11346 [07:52<5:10:04, 1.68s/it]
|
533 |
2%|▏ | 281/11346 [07:54<5:09:03, 1.68s/it]
|
534 |
2%|▏ | 282/11346 [07:56<5:10:14, 1.68s/it]
|
535 |
2%|▏ | 283/11346 [07:57<5:10:30, 1.68s/it]
|
536 |
3%|▎ | 284/11346 [07:59<5:09:50, 1.68s/it]
|
537 |
3%|▎ | 285/11346 [08:01<5:09:45, 1.68s/it]
|
538 |
3%|▎ | 286/11346 [08:02<5:11:25, 1.69s/it]
|
539 |
3%|▎ | 287/11346 [08:04<5:11:07, 1.69s/it]
|
540 |
3%|▎ | 288/11346 [08:06<5:10:45, 1.69s/it]
|
541 |
3%|▎ | 289/11346 [08:07<5:10:22, 1.68s/it]
|
542 |
3%|▎ | 290/11346 [08:09<5:09:34, 1.68s/it]
|
543 |
3%|▎ | 291/11346 [08:11<5:09:15, 1.68s/it]
|
544 |
3%|▎ | 292/11346 [08:12<5:08:31, 1.67s/it]
|
545 |
3%|▎ | 293/11346 [08:14<5:09:04, 1.68s/it]
|
546 |
3%|▎ | 294/11346 [08:16<5:09:19, 1.68s/it]
|
547 |
3%|▎ | 295/11346 [08:17<5:09:08, 1.68s/it]
|
548 |
3%|▎ | 296/11346 [08:19<5:09:44, 1.68s/it]
|
549 |
3%|▎ | 297/11346 [08:21<5:10:02, 1.68s/it]
|
550 |
3%|▎ | 298/11346 [08:23<5:10:14, 1.68s/it]
|
551 |
3%|▎ | 299/11346 [08:24<5:10:42, 1.69s/it]
|
552 |
3%|▎ | 300/11346 [08:26<5:10:02, 1.68s/it]
|
553 |
3%|▎ | 301/11346 [08:28<5:09:29, 1.68s/it]
|
554 |
3%|▎ | 302/11346 [08:29<5:09:15, 1.68s/it]
|
555 |
3%|▎ | 303/11346 [08:31<5:09:55, 1.68s/it]
|
556 |
3%|▎ | 304/11346 [08:33<5:09:50, 1.68s/it]
|
557 |
3%|▎ | 305/11346 [08:34<5:08:58, 1.68s/it]
|
558 |
3%|▎ | 306/11346 [08:36<5:08:28, 1.68s/it]
|
559 |
3%|▎ | 307/11346 [08:38<5:08:26, 1.68s/it]
|
560 |
3%|▎ | 308/11346 [08:39<5:09:05, 1.68s/it]
|
561 |
3%|▎ | 309/11346 [08:41<5:09:25, 1.68s/it]
|
562 |
3%|▎ | 310/11346 [08:43<5:09:32, 1.68s/it]
|
563 |
3%|▎ | 311/11346 [08:44<5:09:56, 1.69s/it]
|
564 |
3%|▎ | 312/11346 [08:46<5:09:44, 1.68s/it]
|
565 |
3%|▎ | 313/11346 [08:48<5:09:14, 1.68s/it]
|
566 |
3%|▎ | 314/11346 [08:49<5:09:10, 1.68s/it]
|
567 |
3%|▎ | 315/11346 [08:51<5:08:30, 1.68s/it]
|
568 |
3%|▎ | 316/11346 [08:53<5:08:03, 1.68s/it]
|
569 |
3%|▎ | 317/11346 [08:54<5:08:00, 1.68s/it]
|
570 |
3%|▎ | 318/11346 [08:56<5:07:26, 1.67s/it]
|
571 |
3%|▎ | 319/11346 [08:58<5:07:48, 1.67s/it]
|
572 |
3%|▎ | 320/11346 [08:59<5:07:47, 1.67s/it]
|
573 |
3%|▎ | 321/11346 [09:01<5:07:54, 1.68s/it]
|
574 |
3%|▎ | 322/11346 [09:03<5:08:15, 1.68s/it]
|
575 |
3%|▎ | 323/11346 [09:05<5:08:35, 1.68s/it]
|
576 |
3%|▎ | 324/11346 [09:06<5:07:48, 1.68s/it]
|
577 |
3%|▎ | 325/11346 [09:08<5:07:33, 1.67s/it]
|
578 |
3%|▎ | 326/11346 [09:10<5:07:48, 1.68s/it]
|
579 |
3%|▎ | 327/11346 [09:11<5:08:02, 1.68s/it]
|
580 |
3%|▎ | 328/11346 [09:13<5:08:07, 1.68s/it]
|
581 |
3%|▎ | 329/11346 [09:15<5:08:07, 1.68s/it]
|
582 |
3%|▎ | 330/11346 [09:16<5:07:30, 1.67s/it]
|
583 |
3%|▎ | 331/11346 [09:18<5:07:48, 1.68s/it]
|
584 |
3%|▎ | 332/11346 [09:20<5:07:49, 1.68s/it]
|
585 |
3%|▎ | 333/11346 [09:21<5:07:30, 1.68s/it]
|
586 |
3%|▎ | 334/11346 [09:23<5:07:12, 1.67s/it]
|
587 |
3%|▎ | 335/11346 [09:25<5:07:25, 1.68s/it]
|
588 |
3%|▎ | 336/11346 [09:26<5:08:11, 1.68s/it]
|
589 |
3%|▎ | 337/11346 [09:28<5:08:37, 1.68s/it]
|
590 |
3%|▎ | 338/11346 [09:30<5:08:59, 1.68s/it]
|
591 |
3%|▎ | 339/11346 [09:31<5:09:20, 1.69s/it]
|
592 |
3%|▎ | 340/11346 [09:33<5:08:50, 1.68s/it]
|
593 |
3%|▎ | 341/11346 [09:35<5:08:26, 1.68s/it]
|
594 |
3%|▎ | 342/11346 [09:36<5:08:35, 1.68s/it]
|
595 |
3%|▎ | 343/11346 [09:38<5:07:49, 1.68s/it]
|
596 |
3%|▎ | 344/11346 [09:40<5:08:33, 1.68s/it]
|
597 |
3%|▎ | 345/11346 [09:41<5:08:50, 1.68s/it]
|
598 |
3%|▎ | 346/11346 [09:43<5:07:25, 1.68s/it]
|
599 |
3%|▎ | 347/11346 [09:45<5:07:46, 1.68s/it]
|
600 |
3%|▎ | 348/11346 [09:46<5:07:39, 1.68s/it]
|
601 |
3%|▎ | 349/11346 [09:48<5:07:15, 1.68s/it]
|
602 |
3%|▎ | 350/11346 [09:50<5:07:38, 1.68s/it]
|
603 |
3%|▎ | 351/11346 [09:51<5:06:52, 1.67s/it]
|
604 |
3%|▎ | 352/11346 [09:53<5:07:16, 1.68s/it]
|
605 |
3%|▎ | 353/11346 [09:55<5:07:09, 1.68s/it]
|
606 |
3%|▎ | 354/11346 [09:57<5:06:57, 1.68s/it]
|
607 |
3%|▎ | 355/11346 [09:58<5:07:25, 1.68s/it]
|
608 |
3%|▎ | 356/11346 [10:00<5:07:07, 1.68s/it]
|
609 |
3%|▎ | 357/11346 [10:02<5:07:48, 1.68s/it]
|
610 |
3%|▎ | 358/11346 [10:03<5:07:20, 1.68s/it]
|
611 |
3%|▎ | 359/11346 [10:05<5:07:33, 1.68s/it]
|
612 |
3%|▎ | 360/11346 [10:07<5:08:02, 1.68s/it]
|
613 |
3%|▎ | 361/11346 [10:08<5:07:04, 1.68s/it]
|
614 |
3%|▎ | 362/11346 [10:10<5:07:14, 1.68s/it]
|
615 |
3%|▎ | 363/11346 [10:12<5:06:59, 1.68s/it]
|
616 |
3%|▎ | 364/11346 [10:13<5:07:16, 1.68s/it]
|
617 |
3%|▎ | 365/11346 [10:15<5:06:41, 1.68s/it]
|
618 |
3%|▎ | 366/11346 [10:17<5:06:39, 1.68s/it]
|
619 |
3%|▎ | 367/11346 [10:18<5:06:27, 1.67s/it]
|
620 |
3%|▎ | 368/11346 [10:20<5:06:38, 1.68s/it]
|
621 |
3%|▎ | 369/11346 [10:22<5:06:19, 1.67s/it]
|
622 |
3%|▎ | 370/11346 [10:23<5:06:04, 1.67s/it]
|
623 |
3%|▎ | 371/11346 [10:25<5:06:24, 1.68s/it]
|
624 |
3%|▎ | 372/11346 [10:27<5:06:36, 1.68s/it]
|
625 |
3%|▎ | 373/11346 [10:28<5:06:09, 1.67s/it]
|
626 |
3%|▎ | 374/11346 [10:30<5:06:08, 1.67s/it]
|
627 |
3%|▎ | 375/11346 [10:32<5:06:13, 1.67s/it]
|
628 |
3%|▎ | 376/11346 [10:33<5:06:27, 1.68s/it]
|
629 |
3%|▎ | 377/11346 [10:35<5:06:12, 1.67s/it]
|
630 |
3%|▎ | 378/11346 [10:37<5:05:59, 1.67s/it]
|
631 |
3%|▎ | 379/11346 [10:38<5:06:33, 1.68s/it]
|
632 |
3%|▎ | 380/11346 [10:40<5:06:22, 1.68s/it]
|
633 |
3%|▎ | 381/11346 [10:42<5:05:56, 1.67s/it]
|
634 |
3%|▎ | 382/11346 [10:43<5:05:40, 1.67s/it]
|
635 |
3%|▎ | 383/11346 [10:45<5:04:57, 1.67s/it]
|
636 |
3%|▎ | 384/11346 [10:47<5:05:19, 1.67s/it]
|
637 |
3%|▎ | 385/11346 [10:48<5:06:05, 1.68s/it]
|
638 |
3%|▎ | 386/11346 [10:50<5:05:20, 1.67s/it]
|
639 |
3%|▎ | 387/11346 [10:52<5:05:16, 1.67s/it]
|
640 |
3%|▎ | 388/11346 [10:53<5:05:16, 1.67s/it]
|
641 |
3%|▎ | 389/11346 [10:55<5:05:18, 1.67s/it]
|
642 |
3%|▎ | 390/11346 [10:57<5:05:54, 1.68s/it]
|
643 |
3%|▎ | 391/11346 [10:59<5:06:06, 1.68s/it]
|
644 |
3%|▎ | 392/11346 [11:00<5:05:30, 1.67s/it]
|
645 |
3%|▎ | 393/11346 [11:02<5:05:10, 1.67s/it]
|
646 |
3%|▎ | 394/11346 [11:04<5:05:04, 1.67s/it]
|
647 |
3%|▎ | 395/11346 [11:05<5:05:07, 1.67s/it]
|
648 |
3%|▎ | 396/11346 [11:07<5:04:45, 1.67s/it]
|
649 |
3%|▎ | 397/11346 [11:09<5:04:28, 1.67s/it]
|
650 |
4%|▎ | 398/11346 [11:10<5:04:42, 1.67s/it]
|
651 |
4%|▎ | 399/11346 [11:12<5:05:08, 1.67s/it]
|
652 |
4%|▎ | 400/11346 [11:14<5:05:40, 1.68s/it]
|
653 |
4%|▎ | 401/11346 [11:15<5:05:43, 1.68s/it]
|
654 |
4%|▎ | 402/11346 [11:17<5:05:13, 1.67s/it]
|
655 |
4%|▎ | 403/11346 [11:19<5:05:09, 1.67s/it]
|
656 |
4%|▎ | 404/11346 [11:20<5:05:18, 1.67s/it]
|
657 |
4%|▎ | 405/11346 [11:22<5:05:18, 1.67s/it]
|
658 |
4%|▎ | 406/11346 [11:24<5:04:55, 1.67s/it]
|
659 |
4%|▎ | 407/11346 [11:25<5:04:46, 1.67s/it]
|
660 |
4%|▎ | 408/11346 [11:27<5:05:44, 1.68s/it]
|
661 |
4%|▎ | 409/11346 [11:29<5:05:17, 1.67s/it]
|
662 |
4%|▎ | 410/11346 [11:30<5:05:06, 1.67s/it]
|
663 |
4%|▎ | 411/11346 [11:32<5:04:43, 1.67s/it]
|
664 |
4%|▎ | 412/11346 [11:34<5:04:45, 1.67s/it]
|
665 |
4%|▎ | 413/11346 [11:35<5:04:46, 1.67s/it]
|
666 |
4%|▎ | 414/11346 [11:37<5:04:21, 1.67s/it]
|
667 |
4%|▎ | 415/11346 [11:39<5:04:18, 1.67s/it]
|
668 |
4%|▎ | 416/11346 [11:40<5:04:29, 1.67s/it]
|
669 |
4%|▎ | 417/11346 [11:42<5:21:42, 1.77s/it]
|
670 |
4%|▎ | 418/11346 [11:44<5:16:59, 1.74s/it]
|
671 |
4%|▎ | 419/11346 [11:46<5:13:55, 1.72s/it]
|
672 |
4%|▎ | 420/11346 [11:47<5:10:47, 1.71s/it]
|
673 |
4%|▎ | 421/11346 [11:49<5:08:47, 1.70s/it]
|
674 |
4%|▎ | 422/11346 [11:51<5:07:36, 1.69s/it]
|
675 |
4%|▎ | 423/11346 [11:52<5:06:24, 1.68s/it]
|
676 |
4%|▎ | 424/11346 [11:54<5:05:53, 1.68s/it]
|
677 |
4%|▎ | 425/11346 [11:56<5:04:52, 1.68s/it]
|
678 |
4%|▍ | 426/11346 [11:57<5:04:15, 1.67s/it]
|
679 |
4%|▍ | 427/11346 [11:59<5:04:23, 1.67s/it]
|
680 |
4%|▍ | 428/11346 [12:01<5:04:02, 1.67s/it]
|
681 |
4%|▍ | 429/11346 [12:02<5:03:42, 1.67s/it]
|
682 |
4%|▍ | 430/11346 [12:04<5:03:38, 1.67s/it]
|
683 |
4%|▍ | 431/11346 [12:06<5:03:47, 1.67s/it]
|
684 |
4%|▍ | 432/11346 [12:07<5:03:50, 1.67s/it]
|
685 |
4%|▍ | 433/11346 [12:09<5:03:43, 1.67s/it]
|
686 |
4%|▍ | 434/11346 [12:11<5:03:07, 1.67s/it]
|
687 |
4%|▍ | 435/11346 [12:12<5:03:32, 1.67s/it]
|
688 |
4%|▍ | 436/11346 [12:14<5:04:27, 1.67s/it]
|
689 |
4%|▍ | 437/11346 [12:16<5:03:56, 1.67s/it]
|
690 |
4%|▍ | 438/11346 [12:17<5:03:46, 1.67s/it]
|
691 |
4%|▍ | 439/11346 [12:19<5:03:49, 1.67s/it]
|
692 |
4%|▍ | 440/11346 [12:21<5:03:23, 1.67s/it]
|
693 |
4%|▍ | 441/11346 [12:22<5:03:29, 1.67s/it]
|
694 |
4%|▍ | 442/11346 [12:24<5:03:01, 1.67s/it]
|
695 |
4%|▍ | 443/11346 [12:26<5:02:27, 1.66s/it]
|
696 |
4%|▍ | 444/11346 [12:27<5:02:31, 1.67s/it]
|
697 |
4%|▍ | 445/11346 [12:29<5:02:39, 1.67s/it]
|
698 |
4%|▍ | 446/11346 [12:31<5:02:30, 1.67s/it]
|
699 |
4%|▍ | 447/11346 [12:32<5:03:08, 1.67s/it]
|
700 |
4%|▍ | 448/11346 [12:34<5:03:54, 1.67s/it]
|
701 |
4%|▍ | 449/11346 [12:36<5:04:07, 1.67s/it]
|
702 |
4%|▍ | 450/11346 [12:37<5:04:10, 1.67s/it]
|
703 |
4%|▍ | 451/11346 [12:39<5:03:38, 1.67s/it]
|
704 |
4%|▍ | 452/11346 [12:41<5:03:29, 1.67s/it]
|
705 |
4%|▍ | 453/11346 [12:42<5:03:48, 1.67s/it]
|
706 |
4%|▍ | 454/11346 [12:44<5:03:09, 1.67s/it]
|
707 |
4%|▍ | 455/11346 [12:46<5:02:57, 1.67s/it]
|
708 |
4%|▍ | 456/11346 [12:47<5:02:57, 1.67s/it]
|
709 |
4%|▍ | 457/11346 [12:49<5:04:03, 1.68s/it]
|
710 |
4%|▍ | 458/11346 [12:51<5:03:59, 1.68s/it]
|
711 |
4%|▍ | 459/11346 [12:53<5:21:15, 1.77s/it]
|
712 |
4%|▍ | 460/11346 [12:55<5:17:49, 1.75s/it]
|
713 |
4%|▍ | 461/11346 [12:56<5:13:41, 1.73s/it]
|
714 |
4%|▍ | 462/11346 [12:58<5:13:35, 1.73s/it]
|
715 |
4%|▍ | 463/11346 [13:00<5:10:36, 1.71s/it]
|
716 |
4%|▍ | 464/11346 [13:01<5:08:09, 1.70s/it]
|
717 |
4%|▍ | 465/11346 [13:03<5:06:18, 1.69s/it]
|
718 |
4%|▍ | 466/11346 [13:05<5:04:55, 1.68s/it]
|
719 |
4%|▍ | 467/11346 [13:06<5:04:22, 1.68s/it]
|
720 |
4%|▍ | 468/11346 [13:08<5:04:22, 1.68s/it]
|
721 |
4%|▍ | 469/11346 [13:10<5:04:45, 1.68s/it]
|
722 |
4%|▍ | 470/11346 [13:11<5:04:50, 1.68s/it]
|
723 |
4%|▍ | 471/11346 [13:13<5:04:24, 1.68s/it]
|
724 |
4%|▍ | 472/11346 [13:15<5:04:33, 1.68s/it]
|
725 |
4%|▍ | 473/11346 [13:16<5:04:15, 1.68s/it]
|
726 |
4%|▍ | 474/11346 [13:18<5:03:50, 1.68s/it]
|
727 |
4%|▍ | 475/11346 [13:20<5:02:43, 1.67s/it]
|
728 |
4%|▍ | 476/11346 [13:21<5:03:09, 1.67s/it]
|
729 |
4%|▍ | 477/11346 [13:23<5:02:54, 1.67s/it]
|
730 |
4%|▍ | 478/11346 [13:25<5:02:49, 1.67s/it]
|
731 |
4%|▍ | 479/11346 [13:26<5:02:38, 1.67s/it]
|
732 |
4%|▍ | 480/11346 [13:28<5:02:39, 1.67s/it]
|
733 |
4%|▍ | 481/11346 [13:30<5:02:47, 1.67s/it]
|
734 |
4%|▍ | 482/11346 [13:31<5:01:53, 1.67s/it]
|
735 |
4%|▍ | 483/11346 [13:33<5:02:10, 1.67s/it]
|
736 |
4%|▍ | 484/11346 [13:35<5:02:28, 1.67s/it]
|
737 |
4%|▍ | 485/11346 [13:36<5:02:10, 1.67s/it]
|
738 |
4%|▍ | 486/11346 [13:38<5:02:15, 1.67s/it]
|
739 |
4%|▍ | 487/11346 [13:40<5:02:22, 1.67s/it]
|
740 |
4%|▍ | 488/11346 [13:41<5:02:32, 1.67s/it]
|
741 |
4%|▍ | 489/11346 [13:43<5:03:04, 1.67s/it]
|
742 |
4%|▍ | 490/11346 [13:45<5:02:53, 1.67s/it]
|
743 |
4%|▍ | 491/11346 [13:46<5:02:19, 1.67s/it]
|
744 |
4%|▍ | 492/11346 [13:48<5:02:10, 1.67s/it]
|
745 |
4%|▍ | 493/11346 [13:50<5:01:41, 1.67s/it]
|
746 |
4%|▍ | 494/11346 [13:51<5:02:02, 1.67s/it]
|
747 |
4%|▍ | 495/11346 [13:53<5:01:21, 1.67s/it]
|
748 |
4%|▍ | 496/11346 [13:55<5:01:26, 1.67s/it]
|
749 |
4%|▍ | 497/11346 [13:56<5:01:15, 1.67s/it]
|
750 |
4%|▍ | 498/11346 [13:58<5:01:42, 1.67s/it]
|
751 |
4%|▍ | 499/11346 [14:00<5:01:44, 1.67s/it]
|
752 |
4%|▍ | 500/11346 [14:01<5:02:14, 1.67s/it]
|
753 |
|
754 |
4%|▍ | 500/11346 [14:01<5:02:14, 1.67s/it]
|
755 |
4%|▍ | 501/11346 [14:03<5:02:32, 1.67s/it]
|
756 |
4%|▍ | 502/11346 [14:05<5:02:02, 1.67s/it]
|
757 |
4%|▍ | 503/11346 [14:06<5:01:34, 1.67s/it]
|
758 |
4%|▍ | 504/11346 [14:08<5:02:24, 1.67s/it]
|
759 |
4%|▍ | 505/11346 [14:10<5:02:05, 1.67s/it]
|
760 |
4%|▍ | 506/11346 [14:11<5:02:21, 1.67s/it]
|
761 |
4%|▍ | 507/11346 [14:13<5:01:52, 1.67s/it]
|
762 |
4%|▍ | 508/11346 [14:15<5:01:57, 1.67s/it]
|
763 |
4%|▍ | 509/11346 [14:16<5:02:53, 1.68s/it]
|
764 |
4%|▍ | 510/11346 [14:18<5:02:34, 1.68s/it]
|
765 |
5%|▍ | 511/11346 [14:20<5:02:36, 1.68s/it]
|
766 |
5%|▍ | 512/11346 [14:22<5:02:55, 1.68s/it]
|
767 |
5%|▍ | 513/11346 [14:23<5:03:14, 1.68s/it]
|
768 |
5%|▍ | 514/11346 [14:25<5:02:12, 1.67s/it]
|
769 |
5%|▍ | 515/11346 [14:27<5:02:19, 1.67s/it]
|
770 |
5%|▍ | 516/11346 [14:28<5:01:39, 1.67s/it]
|
771 |
5%|▍ | 517/11346 [14:30<5:01:15, 1.67s/it]
|
772 |
5%|▍ | 518/11346 [14:32<5:01:18, 1.67s/it]
|
773 |
5%|▍ | 519/11346 [14:33<5:00:55, 1.67s/it]
|
774 |
5%|▍ | 520/11346 [14:35<5:02:20, 1.68s/it]
|
775 |
5%|▍ | 521/11346 [14:37<5:03:12, 1.68s/it]
|
776 |
5%|▍ | 522/11346 [14:38<5:03:18, 1.68s/it]
|
777 |
5%|▍ | 523/11346 [14:40<5:03:23, 1.68s/it]
|
778 |
5%|▍ | 524/11346 [14:42<5:03:28, 1.68s/it]
|
779 |
5%|▍ | 525/11346 [14:43<5:03:05, 1.68s/it]
|
780 |
5%|▍ | 526/11346 [14:45<5:03:17, 1.68s/it]
|
781 |
5%|▍ | 527/11346 [14:47<5:03:29, 1.68s/it]
|
782 |
5%|▍ | 528/11346 [14:48<5:03:48, 1.69s/it]
|
783 |
5%|▍ | 529/11346 [14:50<5:03:55, 1.69s/it]
|
784 |
5%|▍ | 530/11346 [14:52<5:04:50, 1.69s/it]
|
785 |
5%|▍ | 531/11346 [14:53<5:04:48, 1.69s/it]
|
786 |
5%|▍ | 532/11346 [14:55<5:04:26, 1.69s/it]
|
787 |
5%|▍ | 533/11346 [14:57<5:04:27, 1.69s/it]
|
788 |
5%|▍ | 534/11346 [14:59<5:04:52, 1.69s/it]
|
789 |
5%|▍ | 535/11346 [15:00<5:04:59, 1.69s/it]
|
790 |
5%|▍ | 536/11346 [15:02<5:04:05, 1.69s/it]
|
791 |
5%|▍ | 537/11346 [15:04<5:03:08, 1.68s/it]
|
792 |
5%|▍ | 538/11346 [15:05<5:02:24, 1.68s/it]
|
793 |
5%|▍ | 539/11346 [15:07<5:01:50, 1.68s/it]
|
794 |
5%|▍ | 540/11346 [15:09<5:01:27, 1.67s/it]
|
795 |
5%|▍ | 541/11346 [15:10<5:01:09, 1.67s/it]
|
796 |
5%|▍ | 542/11346 [15:12<5:00:10, 1.67s/it]
|
797 |
5%|▍ | 543/11346 [15:14<5:00:16, 1.67s/it]
|
798 |
5%|▍ | 544/11346 [15:15<5:00:51, 1.67s/it]
|
799 |
5%|▍ | 545/11346 [15:17<5:01:04, 1.67s/it]
|
800 |
5%|▍ | 546/11346 [15:19<5:01:08, 1.67s/it]
|
801 |
5%|▍ | 547/11346 [15:20<5:00:45, 1.67s/it]
|
802 |
5%|▍ | 548/11346 [15:22<5:01:03, 1.67s/it]
|
803 |
5%|▍ | 549/11346 [15:24<5:00:43, 1.67s/it]
|
804 |
5%|▍ | 550/11346 [15:25<5:00:52, 1.67s/it]
|
805 |
5%|▍ | 551/11346 [15:27<5:00:40, 1.67s/it]
|
806 |
5%|▍ | 552/11346 [15:29<5:00:01, 1.67s/it]
|
807 |
5%|▍ | 553/11346 [15:30<4:59:21, 1.66s/it]
|
808 |
5%|▍ | 554/11346 [15:32<4:59:19, 1.66s/it]
|
809 |
5%|▍ | 555/11346 [15:34<4:59:11, 1.66s/it]
|
810 |
5%|▍ | 556/11346 [15:35<4:59:44, 1.67s/it]
|
811 |
5%|▍ | 557/11346 [15:37<4:59:52, 1.67s/it]
|
812 |
5%|▍ | 558/11346 [15:39<4:59:58, 1.67s/it]
|
813 |
5%|▍ | 559/11346 [15:40<4:59:58, 1.67s/it]
|
814 |
5%|▍ | 560/11346 [15:42<4:59:56, 1.67s/it]
|
815 |
5%|▍ | 561/11346 [15:44<4:59:27, 1.67s/it]
|
816 |
5%|▍ | 562/11346 [15:45<4:59:50, 1.67s/it]
|
817 |
5%|▍ | 563/11346 [15:47<4:59:42, 1.67s/it]
|
818 |
5%|▍ | 564/11346 [15:49<4:59:51, 1.67s/it]
|
819 |
5%|▍ | 565/11346 [15:50<4:59:37, 1.67s/it]
|
820 |
5%|▍ | 566/11346 [15:52<4:59:35, 1.67s/it]
|
821 |
5%|▍ | 567/11346 [15:54<4:59:40, 1.67s/it]
|
822 |
5%|▌ | 568/11346 [15:55<4:59:11, 1.67s/it]
|
823 |
5%|▌ | 569/11346 [15:57<4:58:53, 1.66s/it]
|
824 |
5%|▌ | 570/11346 [15:59<4:58:52, 1.66s/it]
|
825 |
5%|▌ | 571/11346 [16:00<4:58:37, 1.66s/it]
|
826 |
5%|▌ | 572/11346 [16:02<4:58:21, 1.66s/it]
|
827 |
5%|▌ | 573/11346 [16:04<4:58:34, 1.66s/it]
|
828 |
5%|▌ | 574/11346 [16:05<4:58:30, 1.66s/it]
|
829 |
5%|▌ | 575/11346 [16:07<4:58:31, 1.66s/it]
|
830 |
5%|▌ | 576/11346 [16:09<4:58:09, 1.66s/it]
|
831 |
5%|▌ | 577/11346 [16:10<4:58:28, 1.66s/it]
|
832 |
5%|▌ | 578/11346 [16:12<4:59:12, 1.67s/it]
|
833 |
5%|▌ | 579/11346 [16:14<4:58:45, 1.66s/it]
|
834 |
5%|▌ | 580/11346 [16:15<4:58:44, 1.66s/it]
|
835 |
5%|▌ | 581/11346 [16:17<4:58:33, 1.66s/it]
|
836 |
5%|▌ | 582/11346 [16:19<4:58:39, 1.66s/it]
|
837 |
5%|▌ | 583/11346 [16:20<4:58:37, 1.66s/it]
|
838 |
5%|▌ | 584/11346 [16:22<4:59:01, 1.67s/it]
|
839 |
5%|▌ | 585/11346 [16:24<4:59:00, 1.67s/it]
|
840 |
5%|▌ | 586/11346 [16:25<4:58:48, 1.67s/it]
|
841 |
5%|▌ | 587/11346 [16:27<4:59:31, 1.67s/it]
|
842 |
5%|▌ | 588/11346 [16:29<4:59:17, 1.67s/it]
|
843 |
5%|▌ | 589/11346 [16:30<4:59:01, 1.67s/it]
|
844 |
5%|▌ | 590/11346 [16:32<4:59:00, 1.67s/it]
|
845 |
5%|▌ | 591/11346 [16:34<4:58:32, 1.67s/it]
|
846 |
5%|▌ | 592/11346 [16:35<4:58:14, 1.66s/it]
|
847 |
5%|▌ | 593/11346 [16:37<4:58:02, 1.66s/it]
|
848 |
5%|▌ | 594/11346 [16:39<4:58:02, 1.66s/it]
|
849 |
5%|▌ | 595/11346 [16:40<4:58:33, 1.67s/it]
|
850 |
5%|▌ | 596/11346 [16:42<4:58:51, 1.67s/it]
|
851 |
5%|▌ | 597/11346 [16:44<4:59:06, 1.67s/it]
|
852 |
5%|▌ | 598/11346 [16:45<4:59:38, 1.67s/it]
|
853 |
5%|▌ | 599/11346 [16:47<4:59:16, 1.67s/it]
|
854 |
5%|▌ | 600/11346 [16:49<4:58:32, 1.67s/it]
|
855 |
5%|▌ | 601/11346 [16:50<4:58:21, 1.67s/it]
|
856 |
5%|▌ | 602/11346 [16:52<4:58:30, 1.67s/it]
|
857 |
5%|▌ | 603/11346 [16:54<4:58:01, 1.66s/it]
|
858 |
5%|▌ | 604/11346 [16:55<4:57:49, 1.66s/it]
|
859 |
5%|▌ | 605/11346 [16:57<4:58:10, 1.67s/it]
|
860 |
5%|▌ | 606/11346 [16:59<4:57:58, 1.66s/it]
|
861 |
5%|▌ | 607/11346 [17:00<4:57:37, 1.66s/it]
|
862 |
5%|▌ | 608/11346 [17:02<4:58:11, 1.67s/it]
|
863 |
5%|▌ | 609/11346 [17:04<4:57:44, 1.66s/it]
|
864 |
5%|▌ | 610/11346 [17:05<4:58:14, 1.67s/it]
|
865 |
5%|▌ | 611/11346 [17:07<4:58:20, 1.67s/it]
|
866 |
5%|▌ | 612/11346 [17:09<4:58:21, 1.67s/it]
|
867 |
5%|▌ | 613/11346 [17:10<4:57:54, 1.67s/it]
|
868 |
5%|▌ | 614/11346 [17:12<4:57:44, 1.66s/it]
|
869 |
5%|▌ | 615/11346 [17:14<4:57:21, 1.66s/it]
|
870 |
5%|▌ | 616/11346 [17:15<4:57:10, 1.66s/it]
|
871 |
5%|▌ | 617/11346 [17:17<4:57:06, 1.66s/it]
|
872 |
5%|▌ | 618/11346 [17:19<4:57:04, 1.66s/it]
|
873 |
5%|▌ | 619/11346 [17:20<4:56:53, 1.66s/it]
|
874 |
5%|▌ | 620/11346 [17:22<4:56:52, 1.66s/it]
|
875 |
5%|▌ | 621/11346 [17:24<4:57:12, 1.66s/it]
|
876 |
5%|▌ | 622/11346 [17:25<4:57:38, 1.67s/it]
|
877 |
5%|▌ | 623/11346 [17:27<4:57:06, 1.66s/it]
|
878 |
5%|▌ | 624/11346 [17:29<4:57:06, 1.66s/it]
|
879 |
6%|▌ | 625/11346 [17:30<4:57:03, 1.66s/it]
|
880 |
6%|▌ | 626/11346 [17:32<4:57:12, 1.66s/it]
|
881 |
6%|▌ | 627/11346 [17:34<4:57:32, 1.67s/it]
|
882 |
6%|▌ | 628/11346 [17:35<4:57:31, 1.67s/it]
|
883 |
6%|▌ | 629/11346 [17:37<4:57:00, 1.66s/it]
|
884 |
6%|▌ | 630/11346 [17:39<4:57:02, 1.66s/it]
|
885 |
6%|▌ | 631/11346 [17:40<4:57:57, 1.67s/it]
|
886 |
6%|▌ | 632/11346 [17:42<4:59:03, 1.67s/it]
|
887 |
6%|▌ | 633/11346 [17:44<4:59:56, 1.68s/it]
|
888 |
6%|▌ | 634/11346 [17:45<5:00:30, 1.68s/it]
|
889 |
6%|▌ | 635/11346 [17:47<5:01:20, 1.69s/it]
|
890 |
6%|▌ | 636/11346 [17:49<5:01:53, 1.69s/it]
|
891 |
6%|▌ | 637/11346 [17:50<5:02:01, 1.69s/it]
|
892 |
6%|▌ | 638/11346 [17:52<5:01:55, 1.69s/it]
|
893 |
6%|▌ | 639/11346 [17:54<5:02:05, 1.69s/it]
|
894 |
6%|▌ | 640/11346 [17:55<5:01:57, 1.69s/it]
|
895 |
6%|▌ | 641/11346 [17:57<5:02:03, 1.69s/it]
|
896 |
6%|▌ | 642/11346 [17:59<5:01:59, 1.69s/it]
|
897 |
6%|▌ | 643/11346 [18:01<5:01:45, 1.69s/it]
|
898 |
6%|▌ | 644/11346 [18:02<5:01:34, 1.69s/it]
|
899 |
6%|▌ | 645/11346 [18:04<5:01:09, 1.69s/it]
|
900 |
6%|▌ | 646/11346 [18:06<5:01:04, 1.69s/it]
|
901 |
6%|▌ | 647/11346 [18:07<5:00:31, 1.69s/it]
|
902 |
6%|▌ | 648/11346 [18:09<4:59:12, 1.68s/it]
|
903 |
6%|▌ | 649/11346 [18:11<4:58:50, 1.68s/it]
|
904 |
6%|▌ | 650/11346 [18:12<4:57:53, 1.67s/it]
|
905 |
6%|▌ | 651/11346 [18:14<4:57:24, 1.67s/it]
|
906 |
6%|▌ | 652/11346 [18:16<4:57:12, 1.67s/it]
|
907 |
6%|▌ | 653/11346 [18:17<4:56:21, 1.66s/it]
|
908 |
6%|▌ | 654/11346 [18:19<4:57:55, 1.67s/it]
|
909 |
6%|▌ | 655/11346 [18:21<4:58:01, 1.67s/it]
|
910 |
6%|▌ | 656/11346 [18:22<4:58:46, 1.68s/it]
|
911 |
6%|▌ | 657/11346 [18:24<4:59:30, 1.68s/it]
|
912 |
6%|▌ | 658/11346 [18:26<5:00:04, 1.68s/it]
|
913 |
6%|▌ | 659/11346 [18:27<5:00:31, 1.69s/it]
|
914 |
6%|▌ | 660/11346 [18:29<5:00:33, 1.69s/it]
|
915 |
6%|▌ | 661/11346 [18:31<5:00:11, 1.69s/it]
|
916 |
6%|▌ | 662/11346 [18:32<5:00:16, 1.69s/it]
|
917 |
6%|▌ | 663/11346 [18:34<5:00:07, 1.69s/it]
|
918 |
6%|▌ | 664/11346 [18:36<4:59:52, 1.68s/it]
|
919 |
6%|▌ | 665/11346 [18:37<4:59:42, 1.68s/it]
|
920 |
6%|▌ | 666/11346 [18:39<5:00:08, 1.69s/it]
|
921 |
6%|▌ | 667/11346 [18:41<4:59:57, 1.69s/it]
|
922 |
6%|▌ | 668/11346 [18:43<5:00:15, 1.69s/it]
|
923 |
6%|▌ | 669/11346 [18:44<5:00:14, 1.69s/it]
|
924 |
6%|▌ | 670/11346 [18:46<5:00:31, 1.69s/it]
|
925 |
6%|▌ | 671/11346 [18:48<5:00:12, 1.69s/it]
|
926 |
6%|▌ | 672/11346 [18:49<4:59:53, 1.69s/it]
|
927 |
6%|▌ | 673/11346 [18:51<5:00:01, 1.69s/it]
|
928 |
6%|▌ | 674/11346 [18:53<5:00:30, 1.69s/it]
|
929 |
6%|▌ | 675/11346 [18:54<5:00:06, 1.69s/it]
|
930 |
6%|▌ | 676/11346 [18:56<4:59:33, 1.68s/it]
|
931 |
6%|▌ | 677/11346 [18:58<4:59:41, 1.69s/it]
|
932 |
6%|▌ | 678/11346 [18:59<4:59:27, 1.68s/it]
|
933 |
6%|▌ | 679/11346 [19:01<4:59:22, 1.68s/it]
|
934 |
6%|▌ | 680/11346 [19:03<4:58:49, 1.68s/it]
|
935 |
6%|▌ | 681/11346 [19:04<4:58:44, 1.68s/it]
|
936 |
6%|▌ | 682/11346 [19:06<4:59:19, 1.68s/it]
|
937 |
6%|▌ | 683/11346 [19:08<5:00:28, 1.69s/it]
|
938 |
6%|▌ | 684/11346 [19:10<5:00:22, 1.69s/it]
|
939 |
6%|▌ | 685/11346 [19:11<5:00:50, 1.69s/it]
|
940 |
6%|▌ | 686/11346 [19:13<5:00:45, 1.69s/it]
|
941 |
6%|▌ | 687/11346 [19:15<5:00:53, 1.69s/it]
|
942 |
6%|▌ | 688/11346 [19:16<5:00:21, 1.69s/it]
|
943 |
6%|▌ | 689/11346 [19:18<4:59:46, 1.69s/it]
|
944 |
6%|▌ | 690/11346 [19:20<4:59:40, 1.69s/it]
|
945 |
6%|▌ | 691/11346 [19:21<4:59:23, 1.69s/it]
|
946 |
6%|▌ | 692/11346 [19:23<4:59:26, 1.69s/it]
|
947 |
6%|▌ | 693/11346 [19:25<4:59:19, 1.69s/it]
|
948 |
6%|▌ | 694/11346 [19:26<4:58:49, 1.68s/it]
|
949 |
6%|▌ | 695/11346 [19:28<4:58:41, 1.68s/it]
|
950 |
6%|▌ | 696/11346 [19:30<4:58:39, 1.68s/it]
|
951 |
6%|▌ | 697/11346 [19:31<4:58:06, 1.68s/it]
|
952 |
6%|▌ | 698/11346 [19:33<4:58:06, 1.68s/it]
|
953 |
6%|▌ | 699/11346 [19:35<4:57:56, 1.68s/it]
|
954 |
6%|▌ | 700/11346 [19:36<4:58:00, 1.68s/it]
|
955 |
6%|▌ | 701/11346 [19:38<4:58:51, 1.68s/it]
|
956 |
6%|▌ | 702/11346 [19:40<4:59:12, 1.69s/it]
|
957 |
6%|▌ | 703/11346 [19:42<4:59:37, 1.69s/it]
|
958 |
6%|▌ | 704/11346 [19:43<5:00:02, 1.69s/it]
|
959 |
6%|▌ | 705/11346 [19:45<4:59:14, 1.69s/it]
|
960 |
6%|▌ | 706/11346 [19:47<4:58:56, 1.69s/it]
|
961 |
6%|▌ | 707/11346 [19:48<4:58:31, 1.68s/it]
|
962 |
6%|▌ | 708/11346 [19:50<4:57:54, 1.68s/it]
|
963 |
6%|▌ | 709/11346 [19:52<4:58:07, 1.68s/it]
|
964 |
6%|▋ | 710/11346 [19:53<4:57:46, 1.68s/it]
|
965 |
6%|▋ | 711/11346 [19:55<4:57:57, 1.68s/it]
|
966 |
6%|▋ | 712/11346 [19:57<4:58:10, 1.68s/it]
|
967 |
6%|▋ | 713/11346 [19:58<4:57:58, 1.68s/it]
|
968 |
6%|▋ | 714/11346 [20:00<4:57:53, 1.68s/it]
|
969 |
6%|▋ | 715/11346 [20:02<4:57:37, 1.68s/it]
|
970 |
6%|▋ | 716/11346 [20:03<4:57:45, 1.68s/it]
|
971 |
6%|▋ | 717/11346 [20:05<4:57:19, 1.68s/it]
|
972 |
6%|▋ | 718/11346 [20:07<4:57:44, 1.68s/it]
|
973 |
6%|▋ | 719/11346 [20:08<4:56:51, 1.68s/it]
|
974 |
6%|▋ | 720/11346 [20:10<4:56:15, 1.67s/it]
|
975 |
6%|▋ | 721/11346 [20:12<4:55:17, 1.67s/it]
|
976 |
6%|▋ | 722/11346 [20:13<4:54:35, 1.66s/it]
|
977 |
6%|▋ | 723/11346 [20:15<4:54:33, 1.66s/it]
|
978 |
6%|▋ | 724/11346 [20:17<4:54:14, 1.66s/it]
|
979 |
6%|▋ | 725/11346 [20:18<4:54:05, 1.66s/it]
|
980 |
6%|▋ | 726/11346 [20:20<4:55:30, 1.67s/it]
|
981 |
6%|▋ | 727/11346 [20:22<4:56:16, 1.67s/it]
|
982 |
6%|▋ | 728/11346 [20:23<4:56:08, 1.67s/it]
|
983 |
6%|▋ | 729/11346 [20:25<4:56:47, 1.68s/it]
|
984 |
6%|▋ | 730/11346 [20:27<4:57:13, 1.68s/it]
|
985 |
6%|▋ | 731/11346 [20:28<4:56:30, 1.68s/it]
|
986 |
6%|▋ | 732/11346 [20:30<4:56:32, 1.68s/it]
|
987 |
6%|▋ | 733/11346 [20:32<4:55:43, 1.67s/it]
|
988 |
6%|▋ | 734/11346 [20:33<4:55:09, 1.67s/it]
|
989 |
6%|▋ | 735/11346 [20:35<4:54:32, 1.67s/it]
|
990 |
6%|▋ | 736/11346 [20:37<4:54:17, 1.66s/it]
|
991 |
6%|▋ | 737/11346 [20:38<4:53:46, 1.66s/it]
|
992 |
7%|▋ | 738/11346 [20:40<4:53:33, 1.66s/it]
|
993 |
7%|▋ | 739/11346 [20:42<4:54:24, 1.67s/it]
|
994 |
7%|▋ | 740/11346 [20:43<4:54:11, 1.66s/it]
|
995 |
7%|▋ | 741/11346 [20:45<4:54:15, 1.66s/it]
|
996 |
7%|▋ | 742/11346 [20:47<4:53:57, 1.66s/it]
|
997 |
7%|▋ | 743/11346 [20:48<4:53:34, 1.66s/it]
|
998 |
7%|▋ | 744/11346 [20:50<4:53:25, 1.66s/it]
|
999 |
7%|▋ | 745/11346 [20:52<4:53:35, 1.66s/it]
|
1000 |
7%|▋ | 746/11346 [20:53<4:53:32, 1.66s/it]
|
1001 |
7%|▋ | 747/11346 [20:55<4:53:38, 1.66s/it]
|
1002 |
7%|▋ | 748/11346 [20:57<4:53:14, 1.66s/it]
|
1003 |
7%|▋ | 749/11346 [20:58<4:53:01, 1.66s/it]
|
1004 |
7%|▋ | 750/11346 [21:00<4:53:11, 1.66s/it]
|
1005 |
7%|▋ | 751/11346 [21:02<4:53:15, 1.66s/it]
|
1006 |
7%|▋ | 752/11346 [21:03<4:52:58, 1.66s/it]
|
1007 |
7%|▋ | 753/11346 [21:05<4:54:12, 1.67s/it]
|
1008 |
7%|▋ | 754/11346 [21:07<4:55:08, 1.67s/it]
|
1009 |
7%|▋ | 755/11346 [21:08<4:54:37, 1.67s/it]
|
1010 |
7%|▋ | 756/11346 [21:10<4:54:09, 1.67s/it]
|
1011 |
7%|▋ | 757/11346 [21:12<4:53:54, 1.67s/it]
|
1012 |
7%|▋ | 758/11346 [21:13<4:53:53, 1.67s/it]
|
1013 |
7%|▋ | 759/11346 [21:15<4:53:47, 1.66s/it]
|
1014 |
7%|▋ | 760/11346 [21:17<4:53:31, 1.66s/it]
|
1015 |
7%|▋ | 761/11346 [21:18<4:53:03, 1.66s/it]
|
1016 |
7%|▋ | 762/11346 [21:20<4:53:05, 1.66s/it]
|
1017 |
7%|▋ | 763/11346 [21:22<4:54:17, 1.67s/it]
|
1018 |
7%|▋ | 764/11346 [21:23<4:54:43, 1.67s/it]
|
1019 |
7%|▋ | 765/11346 [21:25<4:55:05, 1.67s/it]
|
1020 |
7%|▋ | 766/11346 [21:27<4:55:33, 1.68s/it]
|
1021 |
7%|▋ | 767/11346 [21:28<4:55:35, 1.68s/it]
|
1022 |
7%|▋ | 768/11346 [21:30<4:55:51, 1.68s/it]
|
1023 |
7%|▋ | 769/11346 [21:32<4:56:18, 1.68s/it]
|
1024 |
7%|▋ | 770/11346 [21:33<4:55:49, 1.68s/it]
|
1025 |
7%|▋ | 771/11346 [21:35<4:55:55, 1.68s/it]
|
1026 |
7%|▋ | 772/11346 [21:37<4:55:46, 1.68s/it]
|
1027 |
7%|▋ | 773/11346 [21:38<4:55:42, 1.68s/it]
|
1028 |
7%|▋ | 774/11346 [21:40<4:55:06, 1.67s/it]
|
1029 |
7%|▋ | 775/11346 [21:42<4:54:05, 1.67s/it]
|
1030 |
7%|▋ | 776/11346 [21:43<4:53:21, 1.67s/it]
|
1031 |
7%|▋ | 777/11346 [21:45<4:54:19, 1.67s/it]
|
1032 |
7%|▋ | 778/11346 [21:47<4:54:38, 1.67s/it]
|
1033 |
7%|▋ | 779/11346 [21:48<4:54:30, 1.67s/it]
|
1034 |
7%|▋ | 780/11346 [21:50<4:55:19, 1.68s/it]
|
1035 |
7%|▋ | 781/11346 [21:52<4:55:11, 1.68s/it]
|
1036 |
7%|▋ | 782/11346 [21:54<4:54:34, 1.67s/it]
|
1037 |
7%|▋ | 783/11346 [21:55<4:54:44, 1.67s/it]
|
1038 |
7%|▋ | 784/11346 [21:57<4:54:42, 1.67s/it]
|
1039 |
7%|▋ | 785/11346 [21:59<4:54:49, 1.68s/it]
|
1040 |
7%|▋ | 786/11346 [22:00<4:55:14, 1.68s/it]
|
1041 |
7%|▋ | 787/11346 [22:02<4:55:26, 1.68s/it]
|
1042 |
7%|▋ | 788/11346 [22:04<4:55:16, 1.68s/it]
|
1043 |
7%|▋ | 789/11346 [22:05<4:54:52, 1.68s/it]
|
1044 |
7%|▋ | 790/11346 [22:07<4:54:51, 1.68s/it]
|
1045 |
7%|▋ | 791/11346 [22:09<4:55:31, 1.68s/it]
|
1046 |
7%|▋ | 792/11346 [22:10<4:55:13, 1.68s/it]
|
1047 |
7%|▋ | 793/11346 [22:12<4:54:55, 1.68s/it]
|
1048 |
7%|▋ | 794/11346 [22:14<4:54:53, 1.68s/it]
|
1049 |
7%|▋ | 795/11346 [22:15<4:54:41, 1.68s/it]
|
1050 |
7%|▋ | 796/11346 [22:17<4:54:32, 1.68s/it]
|
1051 |
7%|▋ | 797/11346 [22:19<4:54:57, 1.68s/it]
|
1052 |
7%|▋ | 798/11346 [22:20<4:55:02, 1.68s/it]
|
1053 |
7%|▋ | 799/11346 [22:22<4:55:15, 1.68s/it]
|
1054 |
7%|▋ | 800/11346 [22:24<4:55:11, 1.68s/it]
|
1055 |
7%|▋ | 801/11346 [22:25<4:54:19, 1.67s/it]
|
1056 |
7%|▋ | 802/11346 [22:27<4:53:24, 1.67s/it]
|
1057 |
7%|▋ | 803/11346 [22:29<4:52:46, 1.67s/it]
|
1058 |
7%|▋ | 804/11346 [22:30<4:52:32, 1.67s/it]
|
1059 |
7%|▋ | 805/11346 [22:32<4:52:00, 1.66s/it]
|
1060 |
7%|▋ | 806/11346 [22:34<4:52:02, 1.66s/it]
|
1061 |
7%|▋ | 807/11346 [22:35<4:53:44, 1.67s/it]
|
1062 |
7%|▋ | 808/11346 [22:37<4:54:03, 1.67s/it]
|
1063 |
7%|▋ | 809/11346 [22:39<4:54:23, 1.68s/it]
|
1064 |
7%|▋ | 810/11346 [22:40<4:53:49, 1.67s/it]
|
1065 |
7%|▋ | 811/11346 [22:42<4:53:01, 1.67s/it]
|
1066 |
7%|▋ | 812/11346 [22:44<4:52:27, 1.67s/it]
|
1067 |
7%|▋ | 813/11346 [22:45<4:52:18, 1.67s/it]
|
1068 |
7%|▋ | 814/11346 [22:47<4:52:02, 1.66s/it]
|
1069 |
7%|▋ | 815/11346 [22:49<4:51:27, 1.66s/it]
|
1070 |
7%|▋ | 816/11346 [22:50<4:51:19, 1.66s/it]
|
1071 |
7%|▋ | 817/11346 [22:52<4:51:09, 1.66s/it]
|
1072 |
7%|▋ | 818/11346 [22:54<4:51:02, 1.66s/it]
|
1073 |
7%|▋ | 819/11346 [22:55<4:51:01, 1.66s/it]
|
1074 |
7%|▋ | 820/11346 [22:57<4:51:02, 1.66s/it]
|
1075 |
7%|▋ | 821/11346 [22:59<5:08:01, 1.76s/it]
|
1076 |
7%|▋ | 822/11346 [23:01<5:02:52, 1.73s/it]
|
1077 |
7%|▋ | 823/11346 [23:02<4:59:30, 1.71s/it]
|
1078 |
7%|▋ | 824/11346 [23:04<4:56:55, 1.69s/it]
|
1079 |
7%|▋ | 825/11346 [23:06<4:55:07, 1.68s/it]
|
1080 |
7%|▋ | 826/11346 [23:07<4:53:39, 1.67s/it]
|
1081 |
7%|▋ | 827/11346 [23:09<4:52:41, 1.67s/it]
|
1082 |
7%|▋ | 828/11346 [23:11<4:51:52, 1.66s/it]
|
1083 |
7%|▋ | 829/11346 [23:12<4:51:17, 1.66s/it]
|
1084 |
7%|▋ | 830/11346 [23:14<4:52:05, 1.67s/it]
|
1085 |
7%|▋ | 831/11346 [23:16<4:52:35, 1.67s/it]
|
1086 |
7%|▋ | 832/11346 [23:17<4:52:52, 1.67s/it]
|
1087 |
7%|▋ | 833/11346 [23:19<4:52:25, 1.67s/it]
|
1088 |
7%|▋ | 834/11346 [23:21<4:52:15, 1.67s/it]
|
1089 |
7%|▋ | 835/11346 [23:22<4:51:22, 1.66s/it]
|
1090 |
7%|▋ | 836/11346 [23:24<4:50:47, 1.66s/it]
|
1091 |
7%|▋ | 837/11346 [23:26<4:50:29, 1.66s/it]
|
1092 |
7%|▋ | 838/11346 [23:27<4:50:16, 1.66s/it]
|
1093 |
7%|▋ | 839/11346 [23:29<4:49:57, 1.66s/it]
|
1094 |
7%|▋ | 840/11346 [23:31<4:50:23, 1.66s/it]
|
1095 |
7%|▋ | 841/11346 [23:32<4:50:18, 1.66s/it]
|
1096 |
7%|▋ | 842/11346 [23:34<4:50:20, 1.66s/it]
|
1097 |
7%|▋ | 843/11346 [23:35<4:49:52, 1.66s/it]
|
1098 |
7%|▋ | 844/11346 [23:37<4:49:43, 1.66s/it]
|
1099 |
7%|▋ | 845/11346 [23:39<4:49:51, 1.66s/it]
|
1100 |
7%|▋ | 846/11346 [23:40<4:49:52, 1.66s/it]
|
1101 |
7%|▋ | 847/11346 [23:42<4:49:52, 1.66s/it]
|
1102 |
7%|▋ | 848/11346 [23:44<4:50:00, 1.66s/it]
|
1103 |
7%|▋ | 849/11346 [23:45<4:50:11, 1.66s/it]
|
1104 |
7%|▋ | 850/11346 [23:47<4:50:22, 1.66s/it]
|
1105 |
8%|▊ | 851/11346 [23:49<4:49:56, 1.66s/it]
|
1106 |
8%|▊ | 852/11346 [23:50<4:49:53, 1.66s/it]
|
1107 |
8%|▊ | 853/11346 [23:52<4:50:04, 1.66s/it]
|
1108 |
8%|▊ | 854/11346 [23:54<4:50:03, 1.66s/it]
|
1109 |
8%|▊ | 855/11346 [23:55<4:49:53, 1.66s/it]
|
1110 |
8%|▊ | 856/11346 [23:57<4:49:48, 1.66s/it]
|
1111 |
8%|▊ | 857/11346 [23:59<4:49:27, 1.66s/it]
|
1112 |
8%|▊ | 858/11346 [24:00<4:49:06, 1.65s/it]
|
1113 |
8%|▊ | 859/11346 [24:02<4:49:20, 1.66s/it]
|
1114 |
8%|▊ | 860/11346 [24:04<4:49:13, 1.65s/it]
|
1115 |
8%|▊ | 861/11346 [24:05<4:49:15, 1.66s/it]
|
1116 |
8%|▊ | 862/11346 [24:07<4:49:24, 1.66s/it]
|
1117 |
8%|▊ | 863/11346 [24:09<4:49:17, 1.66s/it]
|
1118 |
8%|▊ | 864/11346 [24:10<4:49:44, 1.66s/it]
|
1119 |
8%|▊ | 865/11346 [24:12<4:49:21, 1.66s/it]
|
1120 |
8%|▊ | 866/11346 [24:14<4:49:42, 1.66s/it]
|
1121 |
8%|▊ | 867/11346 [24:15<4:52:05, 1.67s/it]
|
1122 |
8%|▊ | 868/11346 [24:17<4:51:23, 1.67s/it]
|
1123 |
8%|▊ | 869/11346 [24:19<4:50:54, 1.67s/it]
|
1124 |
8%|▊ | 870/11346 [24:20<4:50:04, 1.66s/it]
|
1125 |
8%|▊ | 871/11346 [24:22<4:49:53, 1.66s/it]
|
1126 |
8%|▊ | 872/11346 [24:24<4:49:23, 1.66s/it]
|
1127 |
8%|▊ | 873/11346 [24:25<4:49:25, 1.66s/it]
|
1128 |
8%|▊ | 874/11346 [24:27<4:49:14, 1.66s/it]
|
1129 |
8%|▊ | 875/11346 [24:29<4:50:23, 1.66s/it]
|
1130 |
8%|▊ | 876/11346 [24:30<4:51:25, 1.67s/it]
|
1131 |
8%|▊ | 877/11346 [24:32<4:52:09, 1.67s/it]
|
1132 |
8%|▊ | 878/11346 [24:34<4:52:06, 1.67s/it]
|
1133 |
8%|▊ | 879/11346 [24:35<4:52:55, 1.68s/it]
|
1134 |
8%|▊ | 880/11346 [24:37<4:52:37, 1.68s/it]
|
1135 |
8%|▊ | 881/11346 [24:39<4:52:20, 1.68s/it]
|
1136 |
8%|▊ | 882/11346 [24:40<4:52:30, 1.68s/it]
|
1137 |
8%|▊ | 883/11346 [24:42<4:52:46, 1.68s/it]
|
1138 |
8%|▊ | 884/11346 [24:44<4:52:39, 1.68s/it]
|
1139 |
8%|▊ | 885/11346 [24:45<4:52:46, 1.68s/it]
|
1140 |
8%|▊ | 886/11346 [24:47<4:52:38, 1.68s/it]
|
1141 |
8%|▊ | 887/11346 [24:49<4:52:23, 1.68s/it]
|
1142 |
8%|▊ | 888/11346 [24:50<4:52:35, 1.68s/it]
|
1143 |
8%|▊ | 889/11346 [24:52<4:53:13, 1.68s/it]
|
1144 |
8%|▊ | 890/11346 [24:54<4:53:15, 1.68s/it]
|
1145 |
8%|▊ | 891/11346 [24:55<4:53:01, 1.68s/it]
|
1146 |
8%|▊ | 892/11346 [24:57<4:52:58, 1.68s/it]
|
1147 |
8%|▊ | 893/11346 [24:59<4:52:40, 1.68s/it]
|
1148 |
8%|▊ | 894/11346 [25:01<4:52:50, 1.68s/it]
|
1149 |
8%|▊ | 895/11346 [25:02<4:52:28, 1.68s/it]
|
1150 |
8%|▊ | 896/11346 [25:04<4:52:07, 1.68s/it]
|
1151 |
8%|▊ | 897/11346 [25:06<4:52:10, 1.68s/it]
|
1152 |
8%|▊ | 898/11346 [25:07<4:51:51, 1.68s/it]
|
1153 |
8%|▊ | 899/11346 [25:09<4:51:58, 1.68s/it]
|
1154 |
8%|▊ | 900/11346 [25:11<4:51:59, 1.68s/it]
|
1155 |
8%|▊ | 901/11346 [25:12<4:51:45, 1.68s/it]
|
1156 |
8%|▊ | 902/11346 [25:14<4:51:35, 1.68s/it]
|
1157 |
8%|▊ | 903/11346 [25:16<4:51:44, 1.68s/it]
|
1158 |
8%|▊ | 904/11346 [25:17<4:51:24, 1.67s/it]
|
1159 |
8%|▊ | 905/11346 [25:19<4:51:19, 1.67s/it]
|
1160 |
8%|▊ | 906/11346 [25:21<4:51:39, 1.68s/it]
|
1161 |
8%|▊ | 907/11346 [25:22<4:51:33, 1.68s/it]
|
1162 |
8%|▊ | 908/11346 [25:24<4:51:36, 1.68s/it]
|
1163 |
8%|▊ | 909/11346 [25:26<4:51:44, 1.68s/it]
|
1164 |
8%|▊ | 910/11346 [25:27<4:51:53, 1.68s/it]
|
1165 |
8%|▊ | 911/11346 [25:29<4:51:47, 1.68s/it]
|
1166 |
8%|▊ | 912/11346 [25:31<4:51:38, 1.68s/it]
|
1167 |
8%|▊ | 913/11346 [25:32<4:51:39, 1.68s/it]
|
1168 |
8%|▊ | 914/11346 [25:34<4:51:36, 1.68s/it]
|
1169 |
8%|▊ | 915/11346 [25:36<4:51:14, 1.68s/it]
|
1170 |
8%|▊ | 916/11346 [25:37<4:51:21, 1.68s/it]
|
1171 |
8%|▊ | 917/11346 [25:39<4:51:13, 1.68s/it]
|
1172 |
8%|▊ | 918/11346 [25:41<4:51:13, 1.68s/it]
|
1173 |
8%|▊ | 919/11346 [25:42<4:51:11, 1.68s/it]
|
1174 |
8%|▊ | 920/11346 [25:44<4:50:58, 1.67s/it]
|
1175 |
8%|▊ | 921/11346 [25:46<4:50:41, 1.67s/it]
|
1176 |
8%|▊ | 922/11346 [25:47<4:50:43, 1.67s/it]
|
1177 |
8%|▊ | 923/11346 [25:49<4:50:50, 1.67s/it]
|
1178 |
8%|▊ | 924/11346 [25:51<4:50:00, 1.67s/it]
|
1179 |
8%|▊ | 925/11346 [25:52<4:49:06, 1.66s/it]
|
1180 |
8%|▊ | 926/11346 [25:54<4:48:28, 1.66s/it]
|
1181 |
8%|▊ | 927/11346 [25:56<4:49:21, 1.67s/it]
|
1182 |
8%|▊ | 928/11346 [25:57<4:49:41, 1.67s/it]
|
1183 |
8%|▊ | 929/11346 [25:59<4:49:47, 1.67s/it]
|
1184 |
8%|▊ | 930/11346 [26:01<4:50:23, 1.67s/it]
|
1185 |
8%|▊ | 931/11346 [26:02<4:50:44, 1.67s/it]
|
1186 |
8%|▊ | 932/11346 [26:04<4:50:59, 1.68s/it]
|
1187 |
8%|▊ | 933/11346 [26:06<4:51:13, 1.68s/it]
|
1188 |
8%|▊ | 934/11346 [26:08<4:51:35, 1.68s/it]
|
1189 |
8%|▊ | 935/11346 [26:09<4:51:26, 1.68s/it]
|
1190 |
8%|▊ | 936/11346 [26:11<4:51:53, 1.68s/it]
|
1191 |
8%|▊ | 937/11346 [26:13<4:51:13, 1.68s/it]
|
1192 |
8%|▊ | 938/11346 [26:14<4:51:23, 1.68s/it]
|
1193 |
8%|▊ | 939/11346 [26:16<4:50:59, 1.68s/it]
|
1194 |
8%|▊ | 940/11346 [26:18<4:51:04, 1.68s/it]
|
1195 |
8%|▊ | 941/11346 [26:19<4:50:42, 1.68s/it]
|
1196 |
8%|▊ | 942/11346 [26:21<4:50:25, 1.67s/it]
|
1197 |
8%|▊ | 943/11346 [26:23<4:50:25, 1.68s/it]
|
1198 |
8%|▊ | 944/11346 [26:24<4:50:40, 1.68s/it]
|
1199 |
8%|▊ | 945/11346 [26:26<4:50:35, 1.68s/it]
|
1200 |
8%|▊ | 946/11346 [26:28<4:50:44, 1.68s/it]
|
1201 |
8%|▊ | 947/11346 [26:29<4:50:50, 1.68s/it]
|
1202 |
8%|▊ | 948/11346 [26:31<4:50:59, 1.68s/it]
|
1203 |
8%|▊ | 949/11346 [26:33<4:50:40, 1.68s/it]
|
1204 |
8%|▊ | 950/11346 [26:34<4:50:36, 1.68s/it]
|
1205 |
8%|▊ | 951/11346 [26:36<4:50:42, 1.68s/it]
|
1206 |
8%|▊ | 952/11346 [26:38<4:50:17, 1.68s/it]
|
1207 |
8%|▊ | 953/11346 [26:39<4:50:12, 1.68s/it]
|
1208 |
8%|▊ | 954/11346 [26:41<4:50:11, 1.68s/it]
|
1209 |
8%|▊ | 955/11346 [26:43<4:50:10, 1.68s/it]
|
1210 |
8%|▊ | 956/11346 [26:44<4:50:10, 1.68s/it]
|
1211 |
8%|▊ | 957/11346 [26:46<4:50:18, 1.68s/it]
|
1212 |
8%|▊ | 958/11346 [26:48<4:50:12, 1.68s/it]
|
1213 |
8%|▊ | 959/11346 [26:49<4:49:16, 1.67s/it]
|
1214 |
8%|▊ | 960/11346 [26:51<4:48:29, 1.67s/it]
|
1215 |
8%|▊ | 961/11346 [26:53<4:48:08, 1.66s/it]
|
1216 |
8%|▊ | 962/11346 [26:54<4:47:46, 1.66s/it]
|
1217 |
8%|▊ | 963/11346 [26:56<4:47:19, 1.66s/it]
|
1218 |
8%|▊ | 964/11346 [26:58<4:46:57, 1.66s/it]
|
1219 |
9%|▊ | 965/11346 [26:59<4:46:44, 1.66s/it]
|
1220 |
9%|▊ | 966/11346 [27:01<4:46:35, 1.66s/it]
|
1221 |
9%|▊ | 967/11346 [27:03<4:46:30, 1.66s/it]
|
1222 |
9%|▊ | 968/11346 [27:04<4:46:48, 1.66s/it]
|
1223 |
9%|▊ | 969/11346 [27:06<4:47:47, 1.66s/it]
|
1224 |
9%|▊ | 970/11346 [27:08<4:48:03, 1.67s/it]
|
1225 |
9%|▊ | 971/11346 [27:09<4:48:29, 1.67s/it]
|
1226 |
9%|▊ | 972/11346 [27:11<4:48:49, 1.67s/it]
|
1227 |
9%|▊ | 973/11346 [27:13<4:49:01, 1.67s/it]
|
1228 |
9%|▊ | 974/11346 [27:14<4:49:08, 1.67s/it]
|
1229 |
9%|▊ | 975/11346 [27:16<4:49:18, 1.67s/it]
|
1230 |
9%|▊ | 976/11346 [27:18<4:49:31, 1.68s/it]
|
1231 |
9%|▊ | 977/11346 [27:19<4:49:28, 1.68s/it]
|
1232 |
9%|▊ | 978/11346 [27:21<4:49:20, 1.67s/it]
|
1233 |
9%|▊ | 979/11346 [27:23<4:49:30, 1.68s/it]
|
1234 |
9%|▊ | 980/11346 [27:24<4:49:38, 1.68s/it]
|
1235 |
9%|▊ | 981/11346 [27:26<4:49:21, 1.68s/it]
|
1236 |
9%|▊ | 982/11346 [27:28<4:49:27, 1.68s/it]
|
1237 |
9%|▊ | 983/11346 [27:29<4:49:37, 1.68s/it]
|
1238 |
9%|▊ | 984/11346 [27:31<4:49:31, 1.68s/it]
|
1239 |
9%|▊ | 985/11346 [27:33<4:49:24, 1.68s/it]
|
1240 |
9%|▊ | 986/11346 [27:34<4:49:08, 1.67s/it]
|
1241 |
9%|▊ | 987/11346 [27:36<4:49:02, 1.67s/it]
|
1242 |
9%|▊ | 988/11346 [27:38<4:49:15, 1.68s/it]
|
1243 |
9%|▊ | 989/11346 [27:39<4:48:55, 1.67s/it]
|
1244 |
9%|▊ | 990/11346 [27:41<4:48:56, 1.67s/it]
|
1245 |
9%|▊ | 991/11346 [27:43<4:48:55, 1.67s/it]
|
1246 |
9%|▊ | 992/11346 [27:45<4:49:00, 1.67s/it]
|
1247 |
9%|▉ | 993/11346 [27:46<4:49:17, 1.68s/it]
|
1248 |
9%|▉ | 994/11346 [27:48<4:49:04, 1.68s/it]
|
1249 |
9%|▉ | 995/11346 [27:50<4:49:10, 1.68s/it]
|
1250 |
9%|▉ | 996/11346 [27:51<4:49:07, 1.68s/it]
|
1251 |
9%|▉ | 997/11346 [27:53<4:49:17, 1.68s/it]
|
1252 |
9%|▉ | 998/11346 [27:55<4:49:20, 1.68s/it]
|
1253 |
9%|▉ | 999/11346 [27:56<4:49:15, 1.68s/it]
|
1254 |
9%|▉ | 1000/11346 [27:58<4:49:43, 1.68s/it]
|
1255 |
|
1256 |
9%|▉ | 1000/11346 [27:58<4:49:43, 1.68s/it][INFO|trainer.py:3662] 2024-06-04 01:29:49,519 >> ***** Running Evaluation *****
|
1257 |
+
[INFO|trainer.py:3664] 2024-06-04 01:29:49,519 >> Num examples = 1840
|
1258 |
+
[INFO|trainer.py:3667] 2024-06-04 01:29:49,519 >> Batch size = 48
|
1259 |
+
{'loss': 5.1118, 'grad_norm': 0.8546377420425415, 'learning_rate': 8.816009873931059e-05, 'epoch': 0.13}
|
1260 |
+
{'loss': 3.406, 'grad_norm': 0.8593683838844299, 'learning_rate': 9.59831475011252e-05, 'epoch': 0.26}
|
1261 |
+
|
1262 |
+
|
1263 |
0%| | 0/39 [00:00<?, ?it/s][A
|
1264 |
+
|
1265 |
5%|▌ | 2/39 [00:02<00:54, 1.48s/it][A
|
1266 |
+
|
1267 |
8%|▊ | 3/39 [00:05<01:15, 2.10s/it][A
|
1268 |
+
|
1269 |
10%|█ | 4/39 [00:08<01:24, 2.42s/it][A
|
1270 |
+
|
1271 |
13%|█▎ | 5/39 [00:11<01:28, 2.61s/it][A
|
1272 |
+
|
1273 |
15%|█▌ | 6/39 [00:14<01:29, 2.72s/it][A
|
1274 |
+
|
1275 |
18%|█▊ | 7/39 [00:17<01:29, 2.80s/it][A
|
1276 |
+
|
1277 |
21%|██ | 8/39 [00:20<01:28, 2.85s/it][A
|
1278 |
+
|
1279 |
23%|██▎ | 9/39 [00:23<01:26, 2.88s/it][A
|
1280 |
+
|
1281 |
26%|██▌ | 10/39 [00:26<01:24, 2.91s/it][A
|
1282 |
+
|
1283 |
28%|██▊ | 11/39 [00:29<01:21, 2.92s/it][A
|
1284 |
+
|
1285 |
31%|███ | 12/39 [00:32<01:19, 2.93s/it][A
|
1286 |
+
|
1287 |
33%|███▎ | 13/39 [00:35<01:16, 2.94s/it][A
|
1288 |
+
|
1289 |
36%|███▌ | 14/39 [00:38<01:13, 2.95s/it][A
|
1290 |
+
|
1291 |
38%|███▊ | 15/39 [00:41<01:10, 2.95s/it][A
|
1292 |
+
|
1293 |
41%|████ | 16/39 [00:44<01:07, 2.95s/it][A
|
1294 |
+
|
1295 |
44%|████▎ | 17/39 [00:47<01:04, 2.95s/it][A
|
1296 |
+
|
1297 |
46%|████▌ | 18/39 [00:50<01:01, 2.94s/it][A
|
1298 |
+
|
1299 |
49%|████▊ | 19/39 [00:53<00:58, 2.94s/it][A
|
1300 |
+
|
1301 |
51%|█████▏ | 20/39 [00:56<00:55, 2.94s/it][A
|
1302 |
+
|
1303 |
54%|█████▍ | 21/39 [00:59<00:52, 2.94s/it][A
|
1304 |
+
|
1305 |
56%|█████▋ | 22/39 [01:02<00:50, 2.94s/it][A
|
1306 |
+
|
1307 |
59%|█████▉ | 23/39 [01:04<00:47, 2.94s/it][A
|
1308 |
+
|
1309 |
62%|██████▏ | 24/39 [01:07<00:44, 2.94s/it][A
|
1310 |
+
|
1311 |
64%|██████▍ | 25/39 [01:10<00:41, 2.94s/it][A
|
1312 |
+
|
1313 |
67%|██████▋ | 26/39 [01:13<00:38, 2.94s/it][A
|
1314 |
+
|
1315 |
69%|██████▉ | 27/39 [01:16<00:35, 2.94s/it][A
|
1316 |
+
|
1317 |
72%|███████▏ | 28/39 [01:19<00:32, 2.94s/it][A
|
1318 |
+
|
1319 |
74%|███████▍ | 29/39 [01:22<00:29, 2.94s/it][A
|
1320 |
+
|
1321 |
77%|███████▋ | 30/39 [01:25<00:26, 2.94s/it][A
|
1322 |
+
|
1323 |
79%|███████▉ | 31/39 [01:28<00:23, 2.94s/it][A
|
1324 |
+
|
1325 |
82%|████████▏ | 32/39 [01:31<00:20, 2.95s/it][A
|
1326 |
+
|
1327 |
85%|████████▍ | 33/39 [01:34<00:17, 2.95s/it][A
|
1328 |
+
|
1329 |
87%|████████▋ | 34/39 [01:37<00:14, 2.96s/it][A
|
1330 |
+
|
1331 |
90%|████████▉ | 35/39 [01:40<00:11, 2.96s/it][A
|
1332 |
+
|
1333 |
92%|█████████▏| 36/39 [01:43<00:08, 2.96s/it][A
|
1334 |
+
|
1335 |
95%|█████████▍| 37/39 [01:46<00:05, 2.96s/it][A
|
1336 |
+
|
1337 |
97%|█████████▋| 38/39 [01:49<00:02, 2.93s/it][A
|
1338 |
+
|
1339 |
+
|
1340 |
|
1341 |
|
1342 |
+
|
1343 |
9%|▉ | 1000/11346 [30:07<4:49:43, 1.68s/it]
|
1344 |
+
|
1345 |
[A[INFO|trainer.py:3353] 2024-06-04 01:31:58,493 >> Saving model checkpoint to ./training_outputs_job_116987_1_04-06_01-01/checkpoint-1000
|
1346 |
+
[INFO|configuration_utils.py:471] 2024-06-04 01:31:58,504 >> Configuration saved in ./training_outputs_job_116987_1_04-06_01-01/checkpoint-1000/config.json
|
1347 |
+
[INFO|configuration_utils.py:705] 2024-06-04 01:31:58,509 >> Configuration saved in ./training_outputs_job_116987_1_04-06_01-01/checkpoint-1000/generation_config.json
|
1348 |
+
[INFO|modeling_utils.py:2592] 2024-06-04 01:31:59,417 >> Model weights saved in ./training_outputs_job_116987_1_04-06_01-01/checkpoint-1000/model.safetensors
|
1349 |
+
[INFO|tokenization_utils_base.py:2503] 2024-06-04 01:31:59,430 >> tokenizer config file saved in ./training_outputs_job_116987_1_04-06_01-01/checkpoint-1000/tokenizer_config.json
|
1350 |
+
[INFO|tokenization_utils_base.py:2512] 2024-06-04 01:31:59,434 >> Special tokens file saved in ./training_outputs_job_116987_1_04-06_01-01/checkpoint-1000/special_tokens_map.json
|
1351 |
+
[INFO|tokenization_utils_base.py:2503] 2024-06-04 01:32:01,652 >> tokenizer config file saved in ./training_outputs_job_116987_1_04-06_01-01/tokenizer_config.json
|
1352 |
+
[INFO|tokenization_utils_base.py:2512] 2024-06-04 01:32:01,656 >> Special tokens file saved in ./training_outputs_job_116987_1_04-06_01-01/special_tokens_map.json
|
1353 |
+
/home/dshteyma/miniconda3/lib/python3.9/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.
|
1354 |
+
warnings.warn('Was asked to gather along dimension 0, but all '
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 272123144
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85a2564ab57b7b37bcdcfd2e43c48a69cbb78c4a211d0fbf6d340595efdecd4d
|
3 |
size 272123144
|
pip_freeze.txt
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==2.1.0
|
2 |
+
accelerate==0.26.1
|
3 |
+
aiofiles==23.2.1
|
4 |
+
aiohttp==3.8.6
|
5 |
+
aiosignal==1.3.1
|
6 |
+
altair==5.3.0
|
7 |
+
annotated-types==0.6.0
|
8 |
+
antlr4-python3-runtime==4.9.3
|
9 |
+
anyio==4.0.0
|
10 |
+
argon2-cffi==23.1.0
|
11 |
+
argon2-cffi-bindings==21.2.0
|
12 |
+
arrow==1.3.0
|
13 |
+
asttokens==2.4.0
|
14 |
+
astunparse==1.6.3
|
15 |
+
async-lru==2.0.4
|
16 |
+
async-timeout==4.0.3
|
17 |
+
attrs==23.1.0
|
18 |
+
auto-gptq==0.6.0
|
19 |
+
Babel==2.13.0
|
20 |
+
backcall @ file:///home/ktietz/src/ci/backcall_1611930011877/work
|
21 |
+
beartype==0.17.2
|
22 |
+
beautifulsoup4==4.12.2
|
23 |
+
bitsandbytes==0.43.1
|
24 |
+
bleach==6.1.0
|
25 |
+
blis==0.7.11
|
26 |
+
brotlipy==0.7.0
|
27 |
+
cachetools==5.3.2
|
28 |
+
catalogue==2.0.10
|
29 |
+
certifi==2023.7.22
|
30 |
+
cffi==1.16.0
|
31 |
+
chardet==5.2.0
|
32 |
+
charset-normalizer==3.3.0
|
33 |
+
click==8.1.7
|
34 |
+
cloudpathlib==0.16.0
|
35 |
+
cloudpickle==3.0.0
|
36 |
+
colorama @ file:///tmp/build/80754af9/colorama_1607707115595/work
|
37 |
+
coloredlogs==15.0.1
|
38 |
+
comm==0.1.4
|
39 |
+
conda==4.12.0
|
40 |
+
conda-content-trust @ file:///tmp/build/80754af9/conda-content-trust_1617045594566/work
|
41 |
+
conda-package-handling @ file:///tmp/build/80754af9/conda-package-handling_1649105784853/work
|
42 |
+
confection==0.1.4
|
43 |
+
contextlib2==21.6.0
|
44 |
+
contexttimer==0.3.3
|
45 |
+
contourpy==1.1.1
|
46 |
+
cryptography @ file:///tmp/build/80754af9/cryptography_1639414572950/work
|
47 |
+
cycler==0.12.1
|
48 |
+
cymem==2.0.8
|
49 |
+
dataclasses-json==0.6.4
|
50 |
+
DataProperty==1.0.1
|
51 |
+
datasets==2.19.1
|
52 |
+
debugpy==1.8.0
|
53 |
+
decorator @ file:///opt/conda/conda-bld/decorator_1643638310831/work
|
54 |
+
defusedxml==0.7.1
|
55 |
+
dill==0.3.7
|
56 |
+
dnspython==2.6.1
|
57 |
+
docstring_parser==0.16
|
58 |
+
dos2unix==1
|
59 |
+
einops==0.8.0
|
60 |
+
eval_type_backport==0.2.0
|
61 |
+
evaluate==0.4.1
|
62 |
+
exceptiongroup==1.1.3
|
63 |
+
executing==2.0.0
|
64 |
+
fastapi==0.111.0
|
65 |
+
fastapi-cli==0.0.2
|
66 |
+
fastchat==0.1.0
|
67 |
+
fastjsonschema==2.18.1
|
68 |
+
ffmpy==0.3.2
|
69 |
+
filelock==3.12.4
|
70 |
+
fire==0.5.0
|
71 |
+
flash-attn==2.5.8
|
72 |
+
flatbuffers==23.5.26
|
73 |
+
fonttools==4.43.1
|
74 |
+
fqdn==1.5.1
|
75 |
+
frozenlist==1.4.0
|
76 |
+
fschat==0.2.36
|
77 |
+
fsspec==2023.6.0
|
78 |
+
gast==0.5.4
|
79 |
+
gekko==1.0.6
|
80 |
+
globals==0.3.36
|
81 |
+
google-auth==2.27.0
|
82 |
+
google-auth-oauthlib==1.2.0
|
83 |
+
google-pasta==0.2.0
|
84 |
+
gradio==4.29.0
|
85 |
+
gradio_client==0.16.1
|
86 |
+
greenlet==3.0.3
|
87 |
+
grpcio==1.60.1
|
88 |
+
h11==0.14.0
|
89 |
+
h5py==3.10.0
|
90 |
+
httpcore==1.0.5
|
91 |
+
httptools==0.6.1
|
92 |
+
httpx==0.27.0
|
93 |
+
huggingface-hub==0.22.2
|
94 |
+
humanfriendly==10.0
|
95 |
+
hydra-core==1.3.2
|
96 |
+
hydra-joblib-launcher==1.2.0
|
97 |
+
hydra-submitit-launcher==1.2.0
|
98 |
+
idna==3.4
|
99 |
+
importlib-metadata==6.8.0
|
100 |
+
importlib-resources==6.1.0
|
101 |
+
ipykernel==6.25.2
|
102 |
+
ipython==8.18.1
|
103 |
+
isoduration==20.11.0
|
104 |
+
jedi==0.19.1
|
105 |
+
Jinja2==3.1.2
|
106 |
+
joblib==1.3.2
|
107 |
+
json5==0.9.14
|
108 |
+
jsonlines==4.0.0
|
109 |
+
jsonpatch==1.33
|
110 |
+
jsonpointer==2.4
|
111 |
+
jsonschema==4.19.1
|
112 |
+
jsonschema-specifications==2023.7.1
|
113 |
+
jupyter-events==0.7.0
|
114 |
+
jupyter-lsp==2.2.0
|
115 |
+
jupyter_client==8.3.1
|
116 |
+
jupyter_core==5.3.2
|
117 |
+
jupyter_server==2.7.3
|
118 |
+
jupyter_server_terminals==0.4.4
|
119 |
+
jupyterlab==4.0.6
|
120 |
+
jupyterlab-pygments==0.2.2
|
121 |
+
jupyterlab_server==2.25.0
|
122 |
+
keras==2.15.0
|
123 |
+
kiwisolver==1.4.5
|
124 |
+
langchain==0.1.8
|
125 |
+
langchain-community==0.0.21
|
126 |
+
langchain-core==0.1.25
|
127 |
+
langcodes==3.3.0
|
128 |
+
langdetect==1.0.9
|
129 |
+
langsmith==0.1.5
|
130 |
+
libclang==16.0.6
|
131 |
+
lxml==5.1.0
|
132 |
+
Markdown==3.5.2
|
133 |
+
markdown-it-py==3.0.0
|
134 |
+
markdown2==2.4.13
|
135 |
+
MarkupSafe==2.1.5
|
136 |
+
marshmallow==3.20.2
|
137 |
+
matplotlib==3.8.0
|
138 |
+
matplotlib-inline @ file:///opt/conda/conda-bld/matplotlib-inline_1662014470464/work
|
139 |
+
mbstrdecoder==1.1.3
|
140 |
+
mdurl==0.1.2
|
141 |
+
mistune==3.0.2
|
142 |
+
ml-collections==0.1.1
|
143 |
+
ml-dtypes==0.2.0
|
144 |
+
more-itertools==10.2.0
|
145 |
+
mpmath==1.3.0
|
146 |
+
multidict==6.0.4
|
147 |
+
multiprocess==0.70.15
|
148 |
+
murmurhash==1.0.10
|
149 |
+
mypy-extensions==1.0.0
|
150 |
+
nbclient==0.8.0
|
151 |
+
nbconvert==7.9.2
|
152 |
+
nbformat==5.9.2
|
153 |
+
nest-asyncio==1.5.8
|
154 |
+
networkx==3.1
|
155 |
+
nh3==0.2.17
|
156 |
+
ninja==1.11.1.1
|
157 |
+
nltk==3.8.1
|
158 |
+
notebook==7.0.4
|
159 |
+
notebook_shim==0.2.3
|
160 |
+
numexpr==2.9.0
|
161 |
+
numpy==1.26.0
|
162 |
+
nvidia-cublas-cu12==12.1.3.1
|
163 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
164 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
165 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
166 |
+
nvidia-cudnn-cu12==8.9.2.26
|
167 |
+
nvidia-cufft-cu12==11.0.2.54
|
168 |
+
nvidia-curand-cu12==10.3.2.106
|
169 |
+
nvidia-cusolver-cu12==11.4.5.107
|
170 |
+
nvidia-cusparse-cu12==12.1.0.106
|
171 |
+
nvidia-ml-py3==7.352.0
|
172 |
+
nvidia-nccl-cu12==2.18.1
|
173 |
+
nvidia-nvjitlink-cu12==12.2.140
|
174 |
+
nvidia-nvtx-cu12==12.1.105
|
175 |
+
oauthlib==3.2.2
|
176 |
+
omegaconf==2.3.0
|
177 |
+
opt-einsum==3.3.0
|
178 |
+
optimum==1.16.2
|
179 |
+
orjson==3.10.3
|
180 |
+
overrides==7.4.0
|
181 |
+
packaging==23.2
|
182 |
+
pandas==2.1.1
|
183 |
+
pandocfilters==1.5.0
|
184 |
+
parso @ file:///opt/conda/conda-bld/parso_1641458642106/work
|
185 |
+
pathvalidate==3.2.0
|
186 |
+
patsy==0.5.3
|
187 |
+
peft==0.8.2
|
188 |
+
pexpect @ file:///tmp/build/80754af9/pexpect_1605563209008/work
|
189 |
+
pickleshare @ file:///tmp/build/80754af9/pickleshare_1606932040724/work
|
190 |
+
Pillow==10.0.1
|
191 |
+
platformdirs==3.11.0
|
192 |
+
plotly==5.17.0
|
193 |
+
plotly-express==0.4.1
|
194 |
+
portalocker==2.8.2
|
195 |
+
preshed==3.0.9
|
196 |
+
prometheus-client==0.17.1
|
197 |
+
prompt-toolkit==3.0.43
|
198 |
+
protobuf==3.20.3
|
199 |
+
psutil==5.9.5
|
200 |
+
ptyprocess @ file:///tmp/build/80754af9/ptyprocess_1609355006118/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl
|
201 |
+
pure-eval @ file:///opt/conda/conda-bld/pure_eval_1646925070566/work
|
202 |
+
pyarrow==13.0.0
|
203 |
+
pyarrow-hotfix==0.6
|
204 |
+
pyasn1==0.5.1
|
205 |
+
pyasn1-modules==0.3.0
|
206 |
+
pybind11==2.11.1
|
207 |
+
pycosat==0.6.3
|
208 |
+
pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work
|
209 |
+
pydantic==2.6.1
|
210 |
+
pydantic_core==2.16.2
|
211 |
+
pydub==0.25.1
|
212 |
+
Pygments==2.16.1
|
213 |
+
pyOpenSSL @ file:///opt/conda/conda-bld/pyopenssl_1643788558760/work
|
214 |
+
pyparsing==3.1.1
|
215 |
+
PySocks @ file:///tmp/build/80754af9/pysocks_1605305812635/work
|
216 |
+
pytablewriter==1.2.0
|
217 |
+
python-dateutil==2.8.2
|
218 |
+
python-dotenv==1.0.1
|
219 |
+
python-helper==0.3.74
|
220 |
+
python-json-logger==2.0.7
|
221 |
+
python-multipart==0.0.9
|
222 |
+
pytz==2023.3.post1
|
223 |
+
PyYAML==6.0.1
|
224 |
+
pyzmq==25.1.1
|
225 |
+
referencing==0.30.2
|
226 |
+
regex==2023.10.3
|
227 |
+
requests==2.31.0
|
228 |
+
requests-oauthlib==1.3.1
|
229 |
+
responses==0.18.0
|
230 |
+
rfc3339-validator==0.1.4
|
231 |
+
rfc3986-validator==0.1.1
|
232 |
+
rich==13.7.1
|
233 |
+
rotary-embedding-torch==0.5.3
|
234 |
+
rouge==1.0.1
|
235 |
+
rouge-score==0.1.2
|
236 |
+
rpds-py==0.10.4
|
237 |
+
rsa==4.9
|
238 |
+
ruamel-yaml-conda @ file:///tmp/build/80754af9/ruamel_yaml_1616016711199/work
|
239 |
+
ruff==0.4.3
|
240 |
+
sacrebleu==2.4.0
|
241 |
+
safetensors==0.4.3
|
242 |
+
scikit-learn==1.4.1.post1
|
243 |
+
scipy==1.11.3
|
244 |
+
seaborn==0.13.0
|
245 |
+
semantic-version==2.10.0
|
246 |
+
Send2Trash==1.8.2
|
247 |
+
sentencepiece==0.2.0
|
248 |
+
shellingham==1.5.4
|
249 |
+
shortuuid==1.0.13
|
250 |
+
shtab==1.7.1
|
251 |
+
six @ file:///tmp/build/80754af9/six_1644875935023/work
|
252 |
+
smart-open==6.4.0
|
253 |
+
sniffio==1.3.0
|
254 |
+
soupsieve==2.5
|
255 |
+
spacy==3.7.4
|
256 |
+
spacy-legacy==3.0.12
|
257 |
+
spacy-loggers==1.0.5
|
258 |
+
speculative-decoding==0.1.2
|
259 |
+
SQLAlchemy==2.0.27
|
260 |
+
sqlitedict==2.1.0
|
261 |
+
srsly==2.4.8
|
262 |
+
stack-data==0.6.3
|
263 |
+
starlette==0.37.2
|
264 |
+
statsmodels==0.14.0
|
265 |
+
submitit==1.5.1
|
266 |
+
svgwrite==1.4.3
|
267 |
+
sympy==1.12
|
268 |
+
tabledata==1.3.3
|
269 |
+
tabulate==0.9.0
|
270 |
+
tcolorpy==0.1.4
|
271 |
+
tenacity==8.2.3
|
272 |
+
tensorboard==2.15.1
|
273 |
+
tensorboard-data-server==0.7.2
|
274 |
+
tensorflow==2.15.0.post1
|
275 |
+
tensorflow-estimator==2.15.0
|
276 |
+
tensorflow-io-gcs-filesystem==0.35.0
|
277 |
+
tensorrt==8.6.1.post1
|
278 |
+
tensorrt-bindings==8.6.1
|
279 |
+
tensorrt-libs==8.6.1
|
280 |
+
termcolor==2.4.0
|
281 |
+
terminado==0.17.1
|
282 |
+
thinc==8.2.3
|
283 |
+
threadpoolctl==3.3.0
|
284 |
+
tiktoken==0.6.0
|
285 |
+
tinycss2==1.2.1
|
286 |
+
tk==0.1.0
|
287 |
+
tokenizers==0.19.1
|
288 |
+
tomli==2.0.1
|
289 |
+
tomlkit==0.12.0
|
290 |
+
toolz==0.12.1
|
291 |
+
torch==2.1.0
|
292 |
+
torchaudio==2.1.0
|
293 |
+
torchvision==0.16.0
|
294 |
+
tornado==6.3.3
|
295 |
+
tqdm==4.66.1
|
296 |
+
tqdm-multiprocess==0.0.11
|
297 |
+
traitlets==5.11.2
|
298 |
+
-e git+https://github.com/huggingface/transformers.git@bbaa8ceff696c479aecdb4575b2deb1349efd3aa#egg=transformers
|
299 |
+
triton==2.1.0
|
300 |
+
trl==0.8.6
|
301 |
+
typepy==1.3.2
|
302 |
+
typer==0.12.3
|
303 |
+
types-python-dateutil==2.8.19.14
|
304 |
+
typing-inspect==0.9.0
|
305 |
+
typing_extensions==4.8.0
|
306 |
+
tyro==0.8.3
|
307 |
+
tzdata==2023.3
|
308 |
+
ujson==5.9.0
|
309 |
+
unsloth @ git+https://github.com/unslothai/unsloth.git@4211cc01409e3ced4f7abebaf68e244193b46e2c
|
310 |
+
uri-template==1.3.0
|
311 |
+
urllib3==2.0.6
|
312 |
+
uvicorn==0.29.0
|
313 |
+
uvloop==0.19.0
|
314 |
+
wasabi==1.1.2
|
315 |
+
watchfiles==0.21.0
|
316 |
+
wavedrom==2.0.3.post3
|
317 |
+
wcwidth==0.2.8
|
318 |
+
weasel==0.3.4
|
319 |
+
webcolors==1.13
|
320 |
+
webencodings==0.5.1
|
321 |
+
websocket-client==1.6.4
|
322 |
+
websockets==11.0.3
|
323 |
+
Werkzeug==3.0.1
|
324 |
+
word2number==1.1
|
325 |
+
wrapt==1.14.1
|
326 |
+
xformers @ https://download.pytorch.org/whl/cu121/xformers-0.0.22.post7-cp39-cp39-manylinux2014_x86_64.whl
|
327 |
+
xxhash==3.4.1
|
328 |
+
yarl==1.9.2
|
329 |
+
zipp==3.17.0
|
330 |
+
zstandard==0.22.0
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5240
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:989480cea002c6608e056242fe1a9579f9b0ce114baac8ebf59373c8a1228b15
|
3 |
size 5240
|