End of training
Browse files- README.md +3 -3
- all_results.json +13 -13
- args.bin +1 -1
- eval_results.json +7 -7
- events.out.tfevents.1717508814.isl-gpu33.2434801.1 +3 -0
- log.txt +41 -0
- train_results.json +6 -6
- trainer_state.json +265 -12
README.md
CHANGED
@@ -15,10 +15,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
# recreate_llama_68M_vanilla
|
17 |
|
18 |
-
This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 2.
|
21 |
-
- Accuracy: 0.
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
15 |
|
16 |
# recreate_llama_68M_vanilla
|
17 |
|
18 |
+
This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the anon8231489123/ShareGPT_Vicuna_unfiltered/ShareGPT_V3_unfiltered_cleaned_split.json dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 2.3558
|
21 |
+
- Accuracy: 0.5820
|
22 |
|
23 |
## Model description
|
24 |
|
all_results.json
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_loss":
|
5 |
-
"eval_runtime":
|
6 |
-
"eval_samples":
|
7 |
-
"eval_samples_per_second":
|
8 |
-
"eval_steps_per_second": 0.
|
9 |
-
"perplexity":
|
10 |
-
"total_flos":
|
11 |
-
"train_loss":
|
12 |
-
"train_runtime":
|
13 |
-
"train_samples":
|
14 |
-
"train_samples_per_second":
|
15 |
-
"train_steps_per_second":
|
16 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.5819606104373314,
|
4 |
+
"eval_loss": 2.3558192253112793,
|
5 |
+
"eval_runtime": 128.698,
|
6 |
+
"eval_samples": 1840,
|
7 |
+
"eval_samples_per_second": 14.297,
|
8 |
+
"eval_steps_per_second": 0.303,
|
9 |
+
"perplexity": 10.546765500786147,
|
10 |
+
"total_flos": 1.4536404559724544e+17,
|
11 |
+
"train_loss": 2.5941595100713495,
|
12 |
+
"train_runtime": 20556.3593,
|
13 |
+
"train_samples": 90745,
|
14 |
+
"train_samples_per_second": 13.243,
|
15 |
+
"train_steps_per_second": 0.552
|
16 |
}
|
args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 6036
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:201594a79150cdbed9448595ad3b468d7c43b4a56fba8ab6f5d555f487e2bab9
|
3 |
size 6036
|
eval_results.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_loss":
|
5 |
-
"eval_runtime":
|
6 |
-
"eval_samples":
|
7 |
-
"eval_samples_per_second":
|
8 |
-
"eval_steps_per_second": 0.
|
9 |
-
"perplexity":
|
10 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.5819606104373314,
|
4 |
+
"eval_loss": 2.3558192253112793,
|
5 |
+
"eval_runtime": 128.698,
|
6 |
+
"eval_samples": 1840,
|
7 |
+
"eval_samples_per_second": 14.297,
|
8 |
+
"eval_steps_per_second": 0.303,
|
9 |
+
"perplexity": 10.546765500786147
|
10 |
}
|
events.out.tfevents.1717508814.isl-gpu33.2434801.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59238b0247d9a11cebfcaadb2151c6567d768aafe1085c694aab66aa014c757b
|
3 |
+
size 411
|
log.txt
CHANGED
@@ -1018,3 +1018,44 @@ Training completed. Do not forget to share your model on huggingface.co/models =
|
|
1018 |
|
1019 |
|
1020 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1021 |
0%| | 0/39 [00:00<?, ?it/s]
|
1022 |
5%|▌ | 2/39 [00:02<00:54, 1.48s/it]
|
1023 |
8%|▊ | 3/39 [00:05<01:15, 2.10s/it]
|
1024 |
10%|█ | 4/39 [00:08<01:24, 2.43s/it]
|
1025 |
13%|█▎ | 5/39 [00:11<01:28, 2.62s/it]
|
1026 |
15%|█▌ | 6/39 [00:14<01:30, 2.73s/it]
|
1027 |
18%|█▊ | 7/39 [00:17<01:29, 2.81s/it]
|
1028 |
21%|██ | 8/39 [00:20<01:28, 2.86s/it]
|
1029 |
23%|██▎ | 9/39 [00:23<01:26, 2.90s/it]
|
1030 |
26%|██▌ | 10/39 [00:26<01:24, 2.92s/it]
|
1031 |
28%|██▊ | 11/39 [00:29<01:22, 2.93s/it]
|
1032 |
31%|███ | 12/39 [00:32<01:19, 2.94s/it]
|
1033 |
33%|███▎ | 13/39 [00:35<01:16, 2.95s/it]
|
1034 |
36%|███▌ | 14/39 [00:38<01:13, 2.96s/it]
|
1035 |
38%|███▊ | 15/39 [00:41<01:11, 2.96s/it]
|
1036 |
41%|████ | 16/39 [00:44<01:08, 2.96s/it]
|
1037 |
44%|████▎ | 17/39 [00:47<01:05, 2.97s/it]
|
1038 |
46%|████▌ | 18/39 [00:50<01:02, 2.97s/it]
|
1039 |
49%|████▊ | 19/39 [00:53<00:59, 2.97s/it]
|
1040 |
51%|█████▏ | 20/39 [00:56<00:56, 2.97s/it]
|
1041 |
54%|█████▍ | 21/39 [00:59<00:53, 2.97s/it]
|
1042 |
56%|█████▋ | 22/39 [01:02<00:50, 2.97s/it]
|
1043 |
59%|█████▉ | 23/39 [01:05<00:47, 2.97s/it]
|
1044 |
62%|██████▏ | 24/39 [01:08<00:44, 2.97s/it]
|
1045 |
64%|██████▍ | 25/39 [01:11<00:41, 2.97s/it]
|
1046 |
67%|██████▋ | 26/39 [01:14<00:38, 2.97s/it]
|
1047 |
69%|██████▉ | 27/39 [01:17<00:35, 2.97s/it]
|
1048 |
72%|███████▏ | 28/39 [01:20<00:32, 2.97s/it]
|
1049 |
74%|███████▍ | 29/39 [01:23<00:29, 2.97s/it]
|
1050 |
77%|███████▋ | 30/39 [01:26<00:26, 2.97s/it]
|
1051 |
79%|███████▉ | 31/39 [01:29<00:23, 2.97s/it]
|
1052 |
82%|████████▏ | 32/39 [01:32<00:20, 2.97s/it]
|
1053 |
85%|████████▍ | 33/39 [01:35<00:17, 2.97s/it]
|
1054 |
87%|████████▋ | 34/39 [01:38<00:14, 2.97s/it]
|
1055 |
90%|████████▉ | 35/39 [01:41<00:11, 2.97s/it]
|
1056 |
92%|█████████▏| 36/39 [01:43<00:08, 2.97s/it]
|
1057 |
95%|█████████▍| 37/39 [01:46<00:05, 2.97s/it]
|
1058 |
97%|█████████▋| 38/39 [01:49<00:02, 2.94s/it]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1018 |
|
1019 |
|
1020 |
|
1021 |
+
***** train metrics *****
|
1022 |
+
epoch = 3.0
|
1023 |
+
total_flos = 135380817GF
|
1024 |
+
train_loss = 2.5942
|
1025 |
+
train_runtime = 5:42:36.35
|
1026 |
+
train_samples = 90745
|
1027 |
+
train_samples_per_second = 13.243
|
1028 |
+
train_steps_per_second = 0.552
|
1029 |
+
06/04/2024 06:44:45 - INFO - __main__ - *** Evaluate ***
|
1030 |
+
[INFO|trainer.py:3662] 2024-06-04 06:44:45,746 >> ***** Running Evaluation *****
|
1031 |
+
[INFO|trainer.py:3664] 2024-06-04 06:44:45,746 >> Num examples = 1840
|
1032 |
+
[INFO|trainer.py:3667] 2024-06-04 06:44:45,746 >> Batch size = 48
|
1033 |
+
/home/dshteyma/miniconda3/lib/python3.9/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.
|
1034 |
+
warnings.warn('Was asked to gather along dimension 0, but all '
|
1035 |
+
|
1036 |
0%| | 0/39 [00:00<?, ?it/s]
|
1037 |
5%|▌ | 2/39 [00:02<00:54, 1.48s/it]
|
1038 |
8%|▊ | 3/39 [00:05<01:15, 2.10s/it]
|
1039 |
10%|█ | 4/39 [00:08<01:24, 2.43s/it]
|
1040 |
13%|█▎ | 5/39 [00:11<01:28, 2.62s/it]
|
1041 |
15%|█▌ | 6/39 [00:14<01:30, 2.73s/it]
|
1042 |
18%|█▊ | 7/39 [00:17<01:29, 2.81s/it]
|
1043 |
21%|██ | 8/39 [00:20<01:28, 2.86s/it]
|
1044 |
23%|██▎ | 9/39 [00:23<01:26, 2.90s/it]
|
1045 |
26%|██▌ | 10/39 [00:26<01:24, 2.92s/it]
|
1046 |
28%|██▊ | 11/39 [00:29<01:22, 2.93s/it]
|
1047 |
31%|███ | 12/39 [00:32<01:19, 2.94s/it]
|
1048 |
33%|███▎ | 13/39 [00:35<01:16, 2.95s/it]
|
1049 |
36%|███▌ | 14/39 [00:38<01:13, 2.96s/it]
|
1050 |
38%|███▊ | 15/39 [00:41<01:11, 2.96s/it]
|
1051 |
41%|████ | 16/39 [00:44<01:08, 2.96s/it]
|
1052 |
44%|████▎ | 17/39 [00:47<01:05, 2.97s/it]
|
1053 |
46%|████▌ | 18/39 [00:50<01:02, 2.97s/it]
|
1054 |
49%|████▊ | 19/39 [00:53<00:59, 2.97s/it]
|
1055 |
51%|█████▏ | 20/39 [00:56<00:56, 2.97s/it]
|
1056 |
54%|█████▍ | 21/39 [00:59<00:53, 2.97s/it]
|
1057 |
56%|█████▋ | 22/39 [01:02<00:50, 2.97s/it]
|
1058 |
59%|█████▉ | 23/39 [01:05<00:47, 2.97s/it]
|
1059 |
62%|██████▏ | 24/39 [01:08<00:44, 2.97s/it]
|
1060 |
64%|██████▍ | 25/39 [01:11<00:41, 2.97s/it]
|
1061 |
67%|██████▋ | 26/39 [01:14<00:38, 2.97s/it]
|
1062 |
69%|██████▉ | 27/39 [01:17<00:35, 2.97s/it]
|
1063 |
72%|███████▏ | 28/39 [01:20<00:32, 2.97s/it]
|
1064 |
74%|███████▍ | 29/39 [01:23<00:29, 2.97s/it]
|
1065 |
77%|███████▋ | 30/39 [01:26<00:26, 2.97s/it]
|
1066 |
79%|███████▉ | 31/39 [01:29<00:23, 2.97s/it]
|
1067 |
82%|████████▏ | 32/39 [01:32<00:20, 2.97s/it]
|
1068 |
85%|████████▍ | 33/39 [01:35<00:17, 2.97s/it]
|
1069 |
87%|████████▋ | 34/39 [01:38<00:14, 2.97s/it]
|
1070 |
90%|████████▉ | 35/39 [01:41<00:11, 2.97s/it]
|
1071 |
92%|█████████▏| 36/39 [01:43<00:08, 2.97s/it]
|
1072 |
95%|█████████▍| 37/39 [01:46<00:05, 2.97s/it]
|
1073 |
97%|█████████▋| 38/39 [01:49<00:02, 2.94s/it]
|
1074 |
+
[INFO|trainer.py:3353] 2024-06-04 06:46:54,461 >> Saving model checkpoint to ./training_outputs_job_116987_1_04-06_01-01
|
1075 |
+
[INFO|configuration_utils.py:471] 2024-06-04 06:46:54,473 >> Configuration saved in ./training_outputs_job_116987_1_04-06_01-01/config.json
|
1076 |
+
[INFO|configuration_utils.py:705] 2024-06-04 06:46:54,478 >> Configuration saved in ./training_outputs_job_116987_1_04-06_01-01/generation_config.json
|
1077 |
+
[INFO|modeling_utils.py:2592] 2024-06-04 06:46:55,425 >> Model weights saved in ./training_outputs_job_116987_1_04-06_01-01/model.safetensors
|
1078 |
+
[INFO|tokenization_utils_base.py:2503] 2024-06-04 06:46:55,436 >> tokenizer config file saved in ./training_outputs_job_116987_1_04-06_01-01/tokenizer_config.json
|
1079 |
+
[INFO|tokenization_utils_base.py:2512] 2024-06-04 06:46:55,440 >> Special tokens file saved in ./training_outputs_job_116987_1_04-06_01-01/special_tokens_map.json
|
1080 |
+
[INFO|modelcard.py:450] 2024-06-04 06:46:55,614 >> Dropping the following result as it does not have all the necessary fields:
|
1081 |
+
{'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}, 'metrics': [{'name': 'Accuracy', 'type': 'accuracy', 'value': 0.5819606104373314}]}
|
1082 |
+
***** eval metrics *****
|
1083 |
+
epoch = 3.0
|
1084 |
+
eval_accuracy = 0.582
|
1085 |
+
eval_loss = 2.3558
|
1086 |
+
eval_runtime = 0:02:08.69
|
1087 |
+
eval_samples = 1840
|
1088 |
+
eval_samples_per_second = 14.297
|
1089 |
+
eval_steps_per_second = 0.303
|
1090 |
+
perplexity = 10.5468
|
1091 |
+
|
1092 |
+
|
1093 |
+
|
1094 |
+
|
1095 |
+
|
1096 |
+
|
1097 |
+
|
1098 |
+
|
1099 |
+
|
train_results.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
-
"total_flos":
|
4 |
-
"train_loss":
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples":
|
7 |
-
"train_samples_per_second":
|
8 |
-
"train_steps_per_second":
|
9 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
+
"total_flos": 1.4536404559724544e+17,
|
4 |
+
"train_loss": 2.5941595100713495,
|
5 |
+
"train_runtime": 20556.3593,
|
6 |
+
"train_samples": 90745,
|
7 |
+
"train_samples_per_second": 13.243,
|
8 |
+
"train_steps_per_second": 0.552
|
9 |
}
|
trainer_state.json
CHANGED
@@ -3,40 +3,293 @@
|
|
3 |
"best_model_checkpoint": null,
|
4 |
"epoch": 3.0,
|
5 |
"eval_steps": 1000,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
{
|
12 |
"epoch": 3.0,
|
13 |
-
"step":
|
14 |
-
"total_flos":
|
15 |
-
"train_loss":
|
16 |
-
"train_runtime":
|
17 |
-
"train_samples_per_second":
|
18 |
-
"train_steps_per_second":
|
19 |
}
|
20 |
],
|
21 |
"logging_steps": 500,
|
22 |
-
"max_steps":
|
23 |
"num_input_tokens_seen": 0,
|
24 |
"num_train_epochs": 3,
|
25 |
-
"save_steps":
|
26 |
"stateful_callbacks": {
|
27 |
"TrainerControl": {
|
28 |
"args": {
|
29 |
"should_epoch_stop": false,
|
30 |
"should_evaluate": false,
|
31 |
"should_log": false,
|
32 |
-
"should_save":
|
33 |
"should_training_stop": false
|
34 |
},
|
35 |
"attributes": {}
|
36 |
}
|
37 |
},
|
38 |
-
"total_flos":
|
39 |
-
"train_batch_size":
|
40 |
"trial_name": null,
|
41 |
"trial_params": null
|
42 |
}
|
|
|
3 |
"best_model_checkpoint": null,
|
4 |
"epoch": 3.0,
|
5 |
"eval_steps": 1000,
|
6 |
+
"global_step": 11346,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13220518244315177,
|
13 |
+
"grad_norm": 0.8546377420425415,
|
14 |
+
"learning_rate": 8.816009873931059e-05,
|
15 |
+
"loss": 5.1118,
|
16 |
+
"step": 500
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.26441036488630354,
|
20 |
+
"grad_norm": 0.8593683838844299,
|
21 |
+
"learning_rate": 9.59831475011252e-05,
|
22 |
+
"loss": 3.406,
|
23 |
+
"step": 1000
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.26441036488630354,
|
27 |
+
"eval_accuracy": 0.5035308829464115,
|
28 |
+
"eval_loss": 3.23445987701416,
|
29 |
+
"eval_runtime": 128.969,
|
30 |
+
"eval_samples_per_second": 14.267,
|
31 |
+
"eval_steps_per_second": 0.302,
|
32 |
+
"step": 1000
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.3966155473294553,
|
36 |
+
"grad_norm": 0.9617242217063904,
|
37 |
+
"learning_rate": 9.134314230431938e-05,
|
38 |
+
"loss": 3.0005,
|
39 |
+
"step": 1500
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.5288207297726071,
|
43 |
+
"grad_norm": 0.8956136107444763,
|
44 |
+
"learning_rate": 8.670313710751356e-05,
|
45 |
+
"loss": 2.8119,
|
46 |
+
"step": 2000
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.5288207297726071,
|
50 |
+
"eval_accuracy": 0.5364783564495231,
|
51 |
+
"eval_loss": 2.821624517440796,
|
52 |
+
"eval_runtime": 128.8547,
|
53 |
+
"eval_samples_per_second": 14.28,
|
54 |
+
"eval_steps_per_second": 0.303,
|
55 |
+
"step": 2000
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.6610259122157589,
|
59 |
+
"grad_norm": 1.2592207193374634,
|
60 |
+
"learning_rate": 8.206313191070773e-05,
|
61 |
+
"loss": 2.6861,
|
62 |
+
"step": 2500
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.7932310946589106,
|
66 |
+
"grad_norm": 1.3978203535079956,
|
67 |
+
"learning_rate": 7.742312671390191e-05,
|
68 |
+
"loss": 2.6076,
|
69 |
+
"step": 3000
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.7932310946589106,
|
73 |
+
"eval_accuracy": 0.5501396529385527,
|
74 |
+
"eval_loss": 2.6552908420562744,
|
75 |
+
"eval_runtime": 129.1173,
|
76 |
+
"eval_samples_per_second": 14.251,
|
77 |
+
"eval_steps_per_second": 0.302,
|
78 |
+
"step": 3000
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"epoch": 0.9254362771020624,
|
82 |
+
"grad_norm": 1.8927521705627441,
|
83 |
+
"learning_rate": 7.278312151709609e-05,
|
84 |
+
"loss": 2.5643,
|
85 |
+
"step": 3500
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"epoch": 1.0576414595452142,
|
89 |
+
"grad_norm": 4.235791206359863,
|
90 |
+
"learning_rate": 6.814311632029027e-05,
|
91 |
+
"loss": 2.4729,
|
92 |
+
"step": 4000
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 1.0576414595452142,
|
96 |
+
"eval_accuracy": 0.5581473949151462,
|
97 |
+
"eval_loss": 2.5761468410491943,
|
98 |
+
"eval_runtime": 129.3204,
|
99 |
+
"eval_samples_per_second": 14.228,
|
100 |
+
"eval_steps_per_second": 0.302,
|
101 |
+
"step": 4000
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 1.189846641988366,
|
105 |
+
"grad_norm": 2.753159523010254,
|
106 |
+
"learning_rate": 6.350311112348446e-05,
|
107 |
+
"loss": 2.4531,
|
108 |
+
"step": 4500
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 1.3220518244315178,
|
112 |
+
"grad_norm": 3.542167901992798,
|
113 |
+
"learning_rate": 5.886310592667864e-05,
|
114 |
+
"loss": 2.4323,
|
115 |
+
"step": 5000
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 1.3220518244315178,
|
119 |
+
"eval_accuracy": 0.5616867738578195,
|
120 |
+
"eval_loss": 2.536275863647461,
|
121 |
+
"eval_runtime": 129.4842,
|
122 |
+
"eval_samples_per_second": 14.21,
|
123 |
+
"eval_steps_per_second": 0.301,
|
124 |
+
"step": 5000
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"epoch": 1.4542570068746694,
|
128 |
+
"grad_norm": 3.678074598312378,
|
129 |
+
"learning_rate": 5.422310072987282e-05,
|
130 |
+
"loss": 2.3981,
|
131 |
+
"step": 5500
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"epoch": 1.5864621893178212,
|
135 |
+
"grad_norm": 5.024658679962158,
|
136 |
+
"learning_rate": 4.9583095533066995e-05,
|
137 |
+
"loss": 2.3824,
|
138 |
+
"step": 6000
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"epoch": 1.5864621893178212,
|
142 |
+
"eval_accuracy": 0.5660391134427901,
|
143 |
+
"eval_loss": 2.491274118423462,
|
144 |
+
"eval_runtime": 129.1418,
|
145 |
+
"eval_samples_per_second": 14.248,
|
146 |
+
"eval_steps_per_second": 0.302,
|
147 |
+
"step": 6000
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 1.718667371760973,
|
151 |
+
"grad_norm": 5.106564521789551,
|
152 |
+
"learning_rate": 4.4943090336261176e-05,
|
153 |
+
"loss": 2.3763,
|
154 |
+
"step": 6500
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 1.8508725542041247,
|
158 |
+
"grad_norm": 11.649778366088867,
|
159 |
+
"learning_rate": 4.030308513945535e-05,
|
160 |
+
"loss": 2.3719,
|
161 |
+
"step": 7000
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 1.8508725542041247,
|
165 |
+
"eval_accuracy": 0.5685828678235382,
|
166 |
+
"eval_loss": 2.466362237930298,
|
167 |
+
"eval_runtime": 128.8316,
|
168 |
+
"eval_samples_per_second": 14.282,
|
169 |
+
"eval_steps_per_second": 0.303,
|
170 |
+
"step": 7000
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 1.9830777366472767,
|
174 |
+
"grad_norm": 5.842829704284668,
|
175 |
+
"learning_rate": 3.566307994264953e-05,
|
176 |
+
"loss": 2.3411,
|
177 |
+
"step": 7500
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 2.1152829190904283,
|
181 |
+
"grad_norm": 14.795243263244629,
|
182 |
+
"learning_rate": 3.1023074745843715e-05,
|
183 |
+
"loss": 2.3021,
|
184 |
+
"step": 8000
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 2.1152829190904283,
|
188 |
+
"eval_accuracy": 0.5715702725090801,
|
189 |
+
"eval_loss": 2.4403789043426514,
|
190 |
+
"eval_runtime": 128.3806,
|
191 |
+
"eval_samples_per_second": 14.332,
|
192 |
+
"eval_steps_per_second": 0.304,
|
193 |
+
"step": 8000
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 2.24748810153358,
|
197 |
+
"grad_norm": 6.084632873535156,
|
198 |
+
"learning_rate": 2.6383069549037897e-05,
|
199 |
+
"loss": 2.2897,
|
200 |
+
"step": 8500
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 2.379693283976732,
|
204 |
+
"grad_norm": 17.67453956604004,
|
205 |
+
"learning_rate": 2.1743064352232075e-05,
|
206 |
+
"loss": 2.2848,
|
207 |
+
"step": 9000
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 2.379693283976732,
|
211 |
+
"eval_accuracy": 0.5754845372868036,
|
212 |
+
"eval_loss": 2.407994508743286,
|
213 |
+
"eval_runtime": 128.557,
|
214 |
+
"eval_samples_per_second": 14.313,
|
215 |
+
"eval_steps_per_second": 0.303,
|
216 |
+
"step": 9000
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 2.5118984664198836,
|
220 |
+
"grad_norm": 6.01920223236084,
|
221 |
+
"learning_rate": 1.7103059155426253e-05,
|
222 |
+
"loss": 2.2611,
|
223 |
+
"step": 9500
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"epoch": 2.6441036488630356,
|
227 |
+
"grad_norm": 7.932415008544922,
|
228 |
+
"learning_rate": 1.2463053958620433e-05,
|
229 |
+
"loss": 2.2653,
|
230 |
+
"step": 10000
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 2.6441036488630356,
|
234 |
+
"eval_accuracy": 0.5784841549669718,
|
235 |
+
"eval_loss": 2.3834304809570312,
|
236 |
+
"eval_runtime": 128.7742,
|
237 |
+
"eval_samples_per_second": 14.289,
|
238 |
+
"eval_steps_per_second": 0.303,
|
239 |
+
"step": 10000
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 2.776308831306187,
|
243 |
+
"grad_norm": 9.934358596801758,
|
244 |
+
"learning_rate": 7.823048761814613e-06,
|
245 |
+
"loss": 2.2542,
|
246 |
+
"step": 10500
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 2.908514013749339,
|
250 |
+
"grad_norm": 8.533864974975586,
|
251 |
+
"learning_rate": 3.183043565008793e-06,
|
252 |
+
"loss": 2.2447,
|
253 |
+
"step": 11000
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 2.908514013749339,
|
257 |
+
"eval_accuracy": 0.5811017183152439,
|
258 |
+
"eval_loss": 2.3603451251983643,
|
259 |
+
"eval_runtime": 129.0604,
|
260 |
+
"eval_samples_per_second": 14.257,
|
261 |
+
"eval_steps_per_second": 0.302,
|
262 |
+
"step": 11000
|
263 |
+
},
|
264 |
{
|
265 |
"epoch": 3.0,
|
266 |
+
"step": 11346,
|
267 |
+
"total_flos": 1.4536404559724544e+17,
|
268 |
+
"train_loss": 2.5941595100713495,
|
269 |
+
"train_runtime": 20556.3593,
|
270 |
+
"train_samples_per_second": 13.243,
|
271 |
+
"train_steps_per_second": 0.552
|
272 |
}
|
273 |
],
|
274 |
"logging_steps": 500,
|
275 |
+
"max_steps": 11346,
|
276 |
"num_input_tokens_seen": 0,
|
277 |
"num_train_epochs": 3,
|
278 |
+
"save_steps": 1000,
|
279 |
"stateful_callbacks": {
|
280 |
"TrainerControl": {
|
281 |
"args": {
|
282 |
"should_epoch_stop": false,
|
283 |
"should_evaluate": false,
|
284 |
"should_log": false,
|
285 |
+
"should_save": true,
|
286 |
"should_training_stop": false
|
287 |
},
|
288 |
"attributes": {}
|
289 |
}
|
290 |
},
|
291 |
+
"total_flos": 1.4536404559724544e+17,
|
292 |
+
"train_batch_size": 24,
|
293 |
"trial_name": null,
|
294 |
"trial_params": null
|
295 |
}
|