ppo-LunarLander-v2 / config.json
Draichi's picture
feat: push LunarLander model
af81c31
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x780d9c94dcf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x780d9c94dd80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x780d9c94de10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x780d9c94dea0>", "_build": "<function ActorCriticPolicy._build at 0x780d9c94df30>", "forward": "<function ActorCriticPolicy.forward at 0x780d9c94dfc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x780d9c94e050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x780d9c94e0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x780d9c94e170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x780d9c94e200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x780d9c94e290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x780d9c94e320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x780d9c9582c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702069742513429797, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABc2r17boC6Fuy+uqZvi7Xu2906GhjeOQAAgD8AAIA/gKFfvaSgSbk7asm0icbwrpSLjTuz2M8zAACAPwAAgD/GgTQ+BbnxPpStqrxHqVS+CMRFPNayUbwAAAAAAAAAADOBdz2Pnne6OWNCOy++ZjaCtsQ4PbxfugAAgD8AAIA/5hw4vW/MGz9+gwg+I9JZvi3eHD2ihps9AAAAAAAAAADAk4Y+teSOP8ehEj8taaW+eO6lPgrGPT4AAAAAAAAAAA3+ND49vkY8u67yuhEvDrnv4N09FBwYOgAAgD8AAIA/QPesvbgIgLvDnRk+CXjtvcssKbwrhIq+AACAPwAAgD92IMU+eKy7vaNPiTtsH066wO+dvgbVYzoAAIA/AACAP/MCMr48toc+ImlFPe3nRL5xwYu8OEkVvQAAAAAAAAAABp9UvjiY3LtjmpQ7lBUTOR1sMz0Yv6+6AACAPwAAgD+NcY8+9pw5vMHvKrtFygw5JWOnvRgMSzoAAIA/AACAP4B5mD1SAOa5T56XuvuThTYbx2E6q0+zOQAAgD8AAIA/kC2wPod4s72iJPS8xM0tu7EG0r60zxu9AACAPwAAgD9ma7q9w6lMumHjRrqV8pC0TpeMu/u/aDkAAIA/AACAP00XiT60U4+8xpdWPI2wK7pfYAC+NSsJuwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFgZhrWRRuWMAWyUTegDjAF0lEdAjwPiNS619nV9lChoBkdAWa+SwGGEf2gHTegDaAhHQI8G0gntv4x1fZQoaAZHQGN/HdGiHqNoB03oA2gIR0CPFNsUqQRxdX2UKGgGR0BimYR9PUKBaAdN6ANoCEdAjxwvJ7sv7HV9lChoBkdAXUTy08eS0WgHTegDaAhHQI8rNNN8E3d1fZQoaAZHQFmJrOZ9d/toB03oA2gIR0CPLAKIBRyfdX2UKGgGR0BgJcT101ZUaAdN6ANoCEdAjzlrSuyNXHV9lChoBkdAMC3IIWxhUmgHTTIBaAhHQI9B1DBuXNV1fZQoaAZHQGAbvva11GNoB03oA2gIR0CPTBbFjurqdX2UKGgGR0BdP9zCDVYqaAdN6ANoCEdAj0y2912aD3V9lChoBkdAZdGImgJ1JWgHTegDaAhHQI9OTR+jM3Z1fZQoaAZHQGTeAHVwxWVoB03oA2gIR0CPXXKq4pc5dX2UKGgGR0BJvKiGnGbTaAdN6ANoCEdAj2cH5aePJnV9lChoBkdAX7BWCEpRXWgHTegDaAhHQI97aVnmJWN1fZQoaAZHQFiP66J66atoB03oA2gIR0CPhYsH0K7adX2UKGgGR0BHGh4dIXj3aAdN6ANoCEdAj4XzPBzmwXV9lChoBkdAakUHxBmf5GgHTagBaAhHQI+osunMt9R1fZQoaAZHQFhMXO4XoDBoB03oA2gIR0CPs57F85S4dX2UKGgGR0Bgiz8WKuSwaAdN6ANoCEdAj7rNTcZccHV9lChoBkdAYSCrrgOz6mgHTegDaAhHQI/EBG8VYZF1fZQoaAZHQFm9BH09QoFoB03oA2gIR0CPyDkd3jdYdX2UKGgGR0Bbrx4IKMNuaAdN6ANoCEdAj9FYVh1DB3V9lChoBkdAW/9DzAeq72gHTegDaAhHQI/R3jp9qlB1fZQoaAZHQF9SrKNhmXhoB03oA2gIR0CP3RImw7kodX2UKGgGR0Bd/cOskpqiaAdN6ANoCEdAj+RPoNd7fHV9lChoBkdAZNDhcZ9/jWgHTegDaAhHQI/tP5BTn7p1fZQoaAZHQF2NTM7lq8FoB03oA2gIR0CP7gwFC9h7dX2UKGgGR0BZsglruYx+aAdN6ANoCEdAj/AG+9Jz1nV9lChoBkdAWdsNWluWKWgHTegDaAhHQJBdVPFefI11fZQoaAZHQFpo9US7GvRoB03oA2gIR0CQakWEK3NLdX2UKGgGR0Bb2rDQ7cO9aAdN6ANoCEdAkG/mITGo73V9lChoBkdAYZ4OGTLW7WgHTegDaAhHQJBwGx+rlvJ1fZQoaAZHQF3EyFfzBhxoB03oA2gIR0CQgRBomG/OdX2UKGgGR0BY7jMeOn2qaAdN6ANoCEdAkIa7RF7UonV9lChoBkdAQUIbKifxt2gHS/5oCEdAkIcrlNlAeXV9lChoBkdAW6EuTRplBmgHTegDaAhHQJCKbUiILw51fZQoaAZHQGkSldTo+wFoB03JAmgIR0CQirtlqagFdX2UKGgGR0BarKu0TlDGaAdN6ANoCEdAkI69QCSzPnV9lChoBkdAYxqHyEtdzGgHTegDaAhHQJCQpYNiH7B1fZQoaAZHQFo1S1mapgloB03oA2gIR0CQlKy/KyOadX2UKGgGR0BgnUzoEB8yaAdN6ANoCEdAkJToVIqb0HV9lChoBkdAGymXPZ7HAGgHTR0BaAhHQJCWJubZvk11fZQoaAZHQF3TkUKzAvdoB03oA2gIR0CQmXm/336AdX2UKGgGR0AaPjNpudf+aAdNFQFoCEdAkJvCgCfYjHV9lChoBkdAYNSArhBJI2gHTegDaAhHQJChVvAGjbl1fZQoaAZHQGHT3vH93r5oB03oA2gIR0CQoaYVZcLSdX2UKGgGR0Bi7Qt4A0bcaAdN6ANoCEdAkKJ8gQpWm3V9lChoBkdAaiMgi/wiJWgHTVcBaAhHQJClMIUrTYx1fZQoaAZHQFWnuMdcSoRoB03oA2gIR0CQroZAY51edX2UKGgGR0BCwqxC6YmcaAdNBgFoCEdAkLQ0JKJ2uHV9lChoBkdAYNwl0HQhOmgHTegDaAhHQJC22cI7eVN1fZQoaAZHQGMpjgqEvkBoB03oA2gIR0CQufF1B+nZdX2UKGgGR0AXifwqiGnGaAdNHwFoCEdAkMg5WV/tpnV9lChoBkdAX2uvpyIYWWgHTegDaAhHQJDMCFUQ0411fZQoaAZHQGPuhl18stloB03oA2gIR0CQzGg5BC2MdX2UKGgGR0BTxk0elsP8aAdN6ANoCEdAkM9NHH3lCHV9lChoBkdAX0phZyMkyGgHTegDaAhHQJDVPJlrdnF1fZQoaAZHQGFlHvc8DCBoB03oA2gIR0CQ2vuTRplCdX2UKGgGR0BelyhJyyUtaAdN6ANoCEdAkNtU9t/FznV9lChoBkdAYn94Z/CqImgHTegDaAhHQJDdF1oxpL51fZQoaAZHQGEZdIPK+ztoB03oA2gIR0CQ4d6oVEeAdX2UKGgGR0Bl2zr3TNMXaAdN6ANoCEdAkORZ5Rjz7XV9lChoBkdAV/2z7di2D2gHTegDaAhHQJDoyrT6SDB1fZQoaAZHQGSBFhXr+o9oB03oA2gIR0CQ6apeeFtbdX2UKGgGR0BiDXVoYekpaAdN6ANoCEdAkOuu76Hj63V9lChoBkdAX32yIHkcTGgHTegDaAhHQJFNhf/m1Y11fZQoaAZHQF+4kgOjIq9oB03oA2gIR0CRVyku6ErYdX2UKGgGR0BhTbXWe6I4aAdN6ANoCEdAkVq8ujASF3V9lChoBkdAbBXFkxyn1mgHTZ4BaAhHQJFfMA1ejVR1fZQoaAZHQFltKqGUOd5oB03oA2gIR0CRaVcL0BfbdX2UKGgGR0BkuZguyu6maAdN6ANoCEdAkW1Vk6Lfk3V9lChoBkdAZWwPT5O8CmgHTegDaAhHQJFttDKHO8l1fZQoaAZHQGIrs/Y8Md9oB03oA2gIR0CRcNEXLvCudX2UKGgGR0BjINGG21D0aAdN6ANoCEdAkXdSD7Ikq3V9lChoBkdAY9eARTS9d2gHTegDaAhHQJF9wKKHfuV1fZQoaAZHQGD+IYvWYnhoB03oA2gIR0CRfiZZSvTxdX2UKGgGR0BePzjBEa2naAdN6ANoCEdAkYAEGNaQm3V9lChoBkdAXclbkfcN6WgHTegDaAhHQJGFCzyBkI51fZQoaAZHQE1n++dsi0RoB03oA2gIR0CRh6ztCzC2dX2UKGgGR0BkFSC6H0sfaAdN6ANoCEdAkY1y9EkSmXV9lChoBkdAW3GbBoEjgWgHTegDaAhHQJGPzvd/J/51fZQoaAZHQEI5rIo3JgdoB0vxaAhHQJGQ+XLNfPZ1fZQoaAZHQDS0Oy3Td+JoB00dAWgIR0CRmAiZv1lHdX2UKGgGR0Bgdc/yGzrvaAdN6ANoCEdAkZiUBOpKjHV9lChoBkdAYqNPva11GWgHTegDaAhHQJGh1ODaoMt1fZQoaAZHQGGo1WjoIOZoB03oA2gIR0CRpT++/QBxdX2UKGgGR0BicvY6GQCCaAdN6ANoCEdAkamXWjGkvnV9lChoBkdAEYyE+PikwmgHS/hoCEdAkapx0dRzinV9lChoBkdAQc7X18LKFWgHTegDaAhHQJG0yVUuL751fZQoaAZHQGB4h7E5yU9oB03oA2gIR0CRuajz7MxHdX2UKGgGR0BfgyO3lS0jaAdN6ANoCEdAkboVwT/Q0HV9lChoBkdAXHH/ZM+NcWgHTegDaAhHQJG9rai9Iwx1fZQoaAZHQGAjyUkfLcNoB03oA2gIR0CRws+u/1xsdX2UKGgGR0BesxmkFfReaAdN6ANoCEdAkcco2sJY1nV9lChoBkdAYGul+mWMTGgHTegDaAhHQJHHanpB5X51fZQoaAZHQFujUmD15B1oB03oA2gIR0CRzphWYF7ldX2UKGgGR0BcvBWHUMG5aAdN6ANoCEdAkdQHIlt0m3V9lChoBkdAXZ7rZ8KG+WgHTegDaAhHQJHWCn0kGA11fZQoaAZHQF/Qc0cfeUJoB03oA2gIR0CR1wpG4I8hdX2UKGgGR0BguQzrNW2gaAdN6ANoCEdAkdzsWfseGXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}