File size: 2,975 Bytes
6699a72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: distilbert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-multilingual-cased-language-detection-fp16-false-bs-128
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-multilingual-cased-language-detection-fp16-false-bs-128
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0131
- Accuracy: 0.9985
- Weighted f1: 0.9985
- Micro f1: 0.9985
- Macro f1: 0.9984
- Weighted recall: 0.9985
- Micro recall: 0.9985
- Macro recall: 0.9984
- Weighted precision: 0.9985
- Micro precision: 0.9985
- Macro precision: 0.9985
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
| 0.2777 | 1.0 | 83 | 0.0230 | 0.9947 | 0.9947 | 0.9947 | 0.9946 | 0.9947 | 0.9947 | 0.9946 | 0.9947 | 0.9947 | 0.9946 |
| 0.0188 | 2.0 | 166 | 0.0131 | 0.9985 | 0.9985 | 0.9985 | 0.9984 | 0.9985 | 0.9985 | 0.9984 | 0.9985 | 0.9985 | 0.9985 |
| 0.0054 | 3.0 | 249 | 0.0084 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 |
| 0.0027 | 4.0 | 332 | 0.0077 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 |
| 0.0022 | 5.0 | 415 | 0.0084 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | 0.9985 |
### Framework versions
- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4.dev0
- Tokenizers 0.13.3
|