--- language: - pa-IN license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - pa-IN - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-pa-IN-dx1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pa-IN metrics: - name: Test WER type: wer value: 0.48725989807918463 - name: Test CER type: cer value: 0.1687305197540224 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pa-IN metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set: - Loss: 1.0855 - Wer: 0.4755 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-pa-IN-dx1 --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Punjabi language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1200 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4607 | 9.26 | 500 | 2.7746 | 1.0416 | | 0.3442 | 18.52 | 1000 | 0.9114 | 0.5911 | | 0.2213 | 27.78 | 1500 | 0.9687 | 0.5751 | | 0.1242 | 37.04 | 2000 | 1.0204 | 0.5461 | | 0.0998 | 46.3 | 2500 | 1.0250 | 0.5233 | | 0.0727 | 55.56 | 3000 | 1.1072 | 0.5382 | | 0.0605 | 64.81 | 3500 | 1.0588 | 0.5073 | | 0.0458 | 74.07 | 4000 | 1.0818 | 0.5069 | | 0.0338 | 83.33 | 4500 | 1.0948 | 0.5108 | | 0.0223 | 92.59 | 5000 | 1.0986 | 0.4775 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0