|
try: |
|
import bitsandbytes as bnb |
|
from bitsandbytes.nn.modules import Params4bit, Int8Params |
|
except ImportError: |
|
print('import bitsandbytes Error') |
|
|
|
from accelerate import init_empty_weights |
|
import torch |
|
|
|
def Params4bitCuda(self, device): |
|
self.data = self.data.cuda(device) |
|
self.quant_state[0] = self.quant_state[0].cuda(device) |
|
self.quant_state[4][0] = self.quant_state[4][0].cuda(device) |
|
self.quant_state[4][1][0] = self.quant_state[4][1][0].cuda(device) |
|
self.quant_state[4][1][1] = self.quant_state[4][1][1].cuda(device) |
|
|
|
self.quant_state[6] = self.quant_state[6].cuda(device) |
|
return self |
|
|
|
class Linear4bitOnline(torch.nn.Module): |
|
def __init__(self, weight, bias, quant_type): |
|
super().__init__() |
|
self.weight = Params4bit( |
|
weight.data, requires_grad=False, compress_statistics=True, quant_type=quant_type |
|
) |
|
self.compute_dtype = None |
|
|
|
self.bias = bias |
|
|
|
def forward(self, x: torch.Tensor): |
|
|
|
if self.bias is not None and self.bias.dtype != x.dtype: |
|
self.bias.data = self.bias.data.to(x.dtype) |
|
|
|
if getattr(self.weight, "quant_state", None) is None: |
|
print( |
|
"FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first." |
|
) |
|
inp_dtype = x.dtype |
|
if self.compute_dtype is not None: |
|
x = x.to(self.compute_dtype) |
|
|
|
bias = None if self.bias is None else self.bias.to(self.compute_dtype) |
|
out = bnb.matmul_4bit( |
|
x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state |
|
) |
|
|
|
out = out.to(inp_dtype) |
|
|
|
return out |
|
|
|
class Linear8bitLtOnline(torch.nn.Module): |
|
def __init__( |
|
self, |
|
weight, |
|
bias, |
|
has_fp16_weights=True, |
|
memory_efficient_backward=False, |
|
threshold=0.0, |
|
index=None, |
|
): |
|
super().__init__() |
|
assert ( |
|
not memory_efficient_backward |
|
), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0" |
|
self.state = bnb.MatmulLtState() |
|
self.index = index |
|
|
|
|
|
self.state.threshold = threshold |
|
self.state.has_fp16_weights = has_fp16_weights |
|
self.state.memory_efficient_backward = memory_efficient_backward |
|
if threshold > 0.0 and not has_fp16_weights: |
|
self.state.use_pool = True |
|
|
|
self.weight = Int8Params( |
|
weight.data, |
|
has_fp16_weights=has_fp16_weights, |
|
requires_grad=has_fp16_weights, |
|
) |
|
self.bias = bias |
|
|
|
def init_8bit_state(self): |
|
self.state.CB = self.weight.CB |
|
self.state.SCB = self.weight.SCB |
|
self.weight.CB = None |
|
self.weight.SCB = None |
|
|
|
def forward(self, x: torch.Tensor): |
|
self.state.is_training = self.training |
|
if self.weight.CB is not None: |
|
self.init_8bit_state() |
|
|
|
|
|
if self.bias is not None and self.bias.dtype != x.dtype: |
|
self.bias.data = self.bias.data.to(x.dtype) |
|
|
|
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state) |
|
|
|
if not self.state.has_fp16_weights: |
|
if self.state.CB is not None and self.state.CxB is not None: |
|
|
|
|
|
del self.state.CB |
|
self.weight.data = self.state.CxB |
|
return out |
|
|
|
def quantize_offline(model, bits: int): |
|
assert (bits == 4), f'bits: {bits} is not supported' |
|
|
|
for i, layer in enumerate(model.model.layers): |
|
layer.self_attn.W_pack = bnb.nn.Linear4bit( |
|
layer.self_attn.W_pack.weight.shape[1], |
|
layer.self_attn.W_pack.weight.shape[0], |
|
False, |
|
torch.float16, |
|
compress_statistics=True, |
|
quant_type="nf4", |
|
) |
|
layer.self_attn.o_proj = bnb.nn.Linear4bit( |
|
layer.self_attn.o_proj.weight.shape[1], |
|
layer.self_attn.o_proj.weight.shape[0], |
|
False, |
|
torch.float16, |
|
compress_statistics=True, |
|
quant_type="nf4", |
|
) |
|
|
|
layer.mlp.gate_proj = bnb.nn.Linear4bit( |
|
layer.mlp.gate_proj.weight.shape[1], |
|
layer.mlp.gate_proj.weight.shape[0], |
|
False, |
|
torch.float16, |
|
compress_statistics=True, |
|
quant_type="nf4", |
|
) |
|
layer.mlp.down_proj = bnb.nn.Linear4bit( |
|
layer.mlp.down_proj.weight.shape[1], |
|
layer.mlp.down_proj.weight.shape[0], |
|
False, |
|
torch.float16, |
|
compress_statistics=True, |
|
quant_type="nf4", |
|
) |
|
layer.mlp.up_proj = bnb.nn.Linear4bit( |
|
layer.mlp.up_proj.weight.shape[1], |
|
layer.mlp.up_proj.weight.shape[0], |
|
False, |
|
torch.float16, |
|
compress_statistics=True, |
|
quant_type="nf4", |
|
) |
|
return model |
|
|
|
def quantize_online(model, bits: int): |
|
def quant(weight, bias=None): |
|
if bits == 8: |
|
linear = Linear8bitLtOnline( |
|
weight, |
|
bias, |
|
has_fp16_weights=False, |
|
threshold=6.0, |
|
) |
|
if bias is not None: |
|
linear.bias = torch.nn.Parameter(bias) |
|
elif bits == 4: |
|
linear = Linear4bitOnline( |
|
weight, |
|
bias, |
|
quant_type="nf4", |
|
) |
|
else: |
|
raise ValueError("quantize only support 4/8 bit") |
|
return linear |
|
|
|
for i, layer in enumerate(model.model.layers): |
|
layer.self_attn.W_pack = quant(layer.self_attn.W_pack.weight) |
|
layer.self_attn.o_proj = quant(layer.self_attn.o_proj.weight) |
|
layer.mlp.gate_proj = quant(layer.mlp.gate_proj.weight) |
|
layer.mlp.down_proj = quant(layer.mlp.down_proj.weight) |
|
layer.mlp.up_proj = quant(layer.mlp.up_proj.weight) |
|
return model |
|
|
|
def init_model_weight_int4(config, model, state_dict): |
|
|
|
Params4bit.cuda = Params4bitCuda |
|
|
|
for i in range(config.num_hidden_layers): |
|
weight_data = state_dict[f'model.layers.{i}.self_attn.W_pack.weight.data'] |
|
weight_quant_state = state_dict[f'model.layers.{i}.self_attn.W_pack.weight.quant_state'] |
|
model.model.layers[i].self_attn.W_pack.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state) |
|
|
|
weight_data = state_dict[f'model.layers.{i}.self_attn.o_proj.weight.data'] |
|
weight_quant_state = state_dict[f'model.layers.{i}.self_attn.o_proj.weight.quant_state'] |
|
model.model.layers[i].self_attn.o_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state) |
|
|
|
weight_data = state_dict[f'model.layers.{i}.mlp.gate_proj.weight.data'] |
|
weight_quant_state = state_dict[f'model.layers.{i}.mlp.gate_proj.weight.quant_state'] |
|
model.model.layers[i].mlp.gate_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state) |
|
|
|
weight_data = state_dict[f'model.layers.{i}.mlp.up_proj.weight.data'] |
|
weight_quant_state = state_dict[f'model.layers.{i}.mlp.up_proj.weight.quant_state'] |
|
model.model.layers[i].mlp.up_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state) |
|
|
|
weight_data = state_dict[f'model.layers.{i}.mlp.down_proj.weight.data'] |
|
weight_quant_state = state_dict[f'model.layers.{i}.mlp.down_proj.weight.quant_state'] |
|
model.model.layers[i].mlp.down_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state) |
|
|
|
model.model.layers[i].input_layernorm.weight = state_dict[f'model.layers.{i}.input_layernorm.weight'] |
|
model.model.layers[i].post_attention_layernorm.weight = state_dict[f'model.layers.{i}.post_attention_layernorm.weight'] |
|
|
|
model.model.embed_tokens.weight = state_dict['model.embed_tokens.weight'] |
|
model.model.norm.weight = state_dict['model.norm.weight'] |
|
model.lm_head.weight = state_dict['lm_head.weight'] |
|
return model |