File size: 12,360 Bytes
db40565
 
 
 
 
 
 
 
 
8e374dc
 
 
 
47c306a
 
 
 
8e374dc
db40565
 
 
 
 
 
 
47c306a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db40565
 
 
8e374dc
db40565
 
 
8e374dc
db40565
 
 
8e374dc
db40565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47c306a
 
 
 
 
db40565
 
 
 
 
 
 
8e374dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- twitter_pos_vcb
model-index:
- name: bert-base-cased-finetuned-Stromberg_NLP_Twitter-PoS
  results: []
language:
- en
metrics:
- seqeval
- accuracy
- f1
- recall
- precision
pipeline_tag: token-classification
---

# bert-base-cased-finetuned-Stromberg_NLP_Twitter-PoS

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the twitter_pos_vcb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0533
- '''
  - Precision: 0.9580645161290322
  - Recall: 0.9519230769230769
  - F1: 0.954983922829582
  - Number': 312
- B
  - Precision: 0.9658270558694287
  - Recall: 0.9655240037652966
  - F1: 0.9656755060411109
  - Number: 25496
- Bd
  - Precision: 0.9630099728014506
  - Recall: 0.9572819033886085
  - F1: 0.9601373949200036
  - Number: 5548
- Bg
  - Precision: 0.9836065573770492
  - Recall: 0.9853434575313438
  - F1: 0.9844742413549753
  - Number: 5663
- Bn
  - Precision: 0.9182209469153515
  - Recall: 0.9116809116809117
  - F1: 0.9149392423159399
  - Number: 2106
- Bp
  - Precision: 0.9672037914691943
  - Recall: 0.9663488856619736
  - F1: 0.9667761495704902
  - Number': 15839
- Br
  - Precision: 0.94
  - Recall: 0.8785046728971962
  - F1: 0.9082125603864735
  - Number': 107
- Bs
  - Precision: 0.9848484848484849
  - Recall': 0.9701492537313433
  - F1: 0.9774436090225564
  - Number': 67
- Bz
  - Precision: 0.9865819209039548
  - Recall: 0.9850167459897762
  - F1: 0.9857987121813531
  - Number': 5673
- C
  - Precision: 0.9993461203138623,
  - Recall: 0.9993461203138623,
  - F1: 0.9993461203138623,
  - Number: 4588
- D
  - Precision: 0.9876836325864372
  - Recall: 0.9895926256318763
  - F1: 0.988637207575195
  - Number: 6726
- Dt
  - Precision: 1.0
  - Recall: 0.8
  - F1: 0.888888888888889
  - Number: 15
- H
  - Precision: 0.9487382595903587
  - Recall: 0.9305216426193119
  - F1: 0.9395416596626883
  - Number: 9010
- J
  - Precision: 0.9803528468323978
  - Recall: 0.980588754311382
  - F1: 0.9804707863816818
  - Number: 12467
- Jr
  - Precision: 0.9400386847195358
  - Recall: 0.9818181818181818
  - F1': 0.9604743083003953
  - Number': 495
- Js
  - Precision: 0.9612141652613828
  - Recall: 0.991304347826087
  - F1: 0.9760273972602741
  - Number': 575
- N
  - Precision: 0.9795543362923471
  - Recall: 0.9793769083475651
  - F1: 0.9794656142847902
  - Number': 38646
- Np
  - Precision: 0.9330242966751918
  - Recall: 0.9278334128119536
  - F1: 0.9304216147286205
  - Number': 6291
- Nps
  - Precision: 0.75
  - Recall: 0.23076923076923078
  - F1: 0.3529411764705882
  - Number: 26
- Ns
  - Precision: 0.9691858990616282
  - Recall: 0.9773657289002557
  - F1: 0.9732586272762003
  - Number': 7820
- O
  - Precision: 0.9984323288625675
  - Recall: 0.999302649930265
  - F1: 0.9988672998170254
  - Number: 5736
- Os
  - Precision: 1.0
  - Recall: 0.9952267303102625
  - F1: 0.9976076555023923
  - Number: 419
- P
  - Precision: 0.9887869520897044
  - Recall: 0.9918200408997955
  - F1: 0.9903011740684022
  - Number: 2934
- Rb
  - Precision: 0.9971910112359551
  - Recall: 0.9983929288871033
  - F1: 0.9977916081108211
  - Number: 2489
- Rl
  - Precision: 1.0
  - Recall: 0.9997228381374723
  - F1: 0.9998613998613999
  - Number: 3608
- Rp
  - Precision: 0.9979960600502683
  - Recall: 0.9980638586956522
  - F1: 0.9980299582215278
  - Number: 29440
- Rp$
  - Precision: 0.9975770162686051
  - Recall: 0.9972318339100346
  - F1: 0.9974043952240872
  - Number: 5780
- Sr
  - Precision: 0.9998923110058152
  - Recall: 0.9998384752059442
  - F1: 0.9998653923812088
  - Number: 18573
- T
  - Precision: 0.9987569919204475
  - Recall: 0.9984811874352779
  - F1: 0.9986190706345371
  - Number: 28970
- W
  - Precision: 0.0
  - Recall: 0.0
  - F1: 0.0
  - number: 1
- X
  - Precision: 0.9466666666666667,
  - Recall: 0.9594594594594594,
  - F1 0.9530201342281879,
  - Number: 74}
- Ym
  - Precision: 0.0
  - Recall: 0.0
  - F1: 0.0
  - Number: 5
- ' '
  - Precision: 0.9951481772882245
  - Recall: 0.9949524745984923
  - F1: 0.9950503163208444
  - Number: 15255
- '`'
  - Precision: 0.9540229885057471
  - Recall: 0.9595375722543352
  - F1: 0.956772334293948
  - Number: 173

- Overall
  - Precision: 0.9828
  - Recall: 0.9820
  - F1: 0.9824
  - Accuracy: 0.9860

## Model description

For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/StrombergNLP-Twitter_pos_vcb/NER%20Project%20Using%20StrombergNLP%20Twitter_pos_vcb%20Dataset.ipynb

## Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

## Training and evaluation data

Dataset Source: https://huggingface.co/datasets/strombergnlp/twitter_pos_vcb

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | ''' Precision | ''' Recall | ''' F1 | ''' Number | B Precision | B Recall | B F1 | B Number | Bd Precision | Bd Recall | Bd F1 | Bd Number | Bg Precision | Bg Recall | Bg F1 | Bg Number | Bn Precision | Bn Recall | Bn F1 | Bn Number | Bp Precision | Bp Recall | Bp F1 | Bp Number | Br Precision | Br Recall | Br F1 | Br Number | Bs precision | Bs Recall | Bs F1 | Bs Number | Bz Precision | Bz Recall | Bz F1 | Bz Number | C Precision | C Recall | C F1 | C Number | D Precision | D Recall | D F1 | D Number | Dt Precision | Dt Recall | Dt F1 | Dt Number | H Precision | H Recall | H F1 | H Number | J Precision | J Recall | J F1 | J Number | Jr Precision | Jr Recall | Jr F1 | Jr Number | Js Precision | Js Recall | Js F1 | Js Number | N Precision | N Recall | N F1 | N Number | Np Precision | Np Recall | Np F1 | Np Number | Nps Precision | Nps Recall | Nps F1 | Nps Number | Ns Precision | Ns Recall | Ns F1 | Ns Number | O Precision | O Recall | O F1 | O Number | Os Precision | Os Recall | Os F1 | Os Number | P Precision | P Recall | P F1 | P Number | Rb Precision | Rb Recall | Rb f1 | Rb Number | Rl Precision | Rl Recall | Rl F1 | Rl Number | Rp Precision | Rp Recall | Rp F1 | Rp Number | Rp$ Precision | Rp$ Recall | Rp$ F1 | Rp$ Number | Sr Precision | Sr Recall | Sr F1 | Sr Number | T Precision | T recall | T F1 | T Number | W Precision | W Recall | W F1 | W Number | X Precision | X Recall | X F1 | X Number | Ym Precision | Ym Recall | Ym F1 | Ym Number | ' ' Precision | ' ' Recall | ' ' F1 | ' ' Number | '`' Precision | '`' Recall | '`' F1 | '`' Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|
| 0.0617 | 1.0 | 7477 | 0.0595 | 0.9331 | 0.9391 | 0.9361 | 312 | 0.9563 | 0.9536 | 0.9550 | 25496 | 0.9716 | 0.9322 | 0.9515 | 5548 | 0.9811 | 0.9786 | 0.9798 | 5663 | 0.8725 | 0.9231 | 0.8971 | 2106 | 0.9556 | 0.9586 | 0.9571 | 15839 | 0.8879 | 0.8879 | 0.8879 | 107 | 0.8590 | 1.0 | 0.9241 | 67 | 0.9793 | 0.9834 | 0.9814 | 5673 | 0.9985 | 0.9991 | 0.9988 | 4588 | 0.9818 | 0.9886 | 0.9852 | 6726 | 1.0 | 0.8 | 0.8889 | 15 | 0.9391 | 0.9105 | 0.9246 | 9010 | 0.9707 | 0.9766 | 0.9736 | 12467 | 0.9212 | 0.9677 | 0.9438 | 495 | 0.9227 | 0.9757 | 0.9484 | 575 | 0.9754 | 0.9738 | 0.9746 | 38646 | 0.9158 | 0.9200 | 0.9179 | 6291 | 0.0 | 0.0 | 0.0 | 26 | 0.9657 | 0.9688 | 0.9673 | 7820 | 0.9972 | 0.9990 | 0.9981 | 5736 | 1.0 | 0.9928 | 0.9964 | 419 | 0.9771 | 0.9908 | 0.9839 | 2934 | 0.9948 | 0.9968 | 0.9958 | 2489 | 1.0 | 0.9997 | 0.9999 | 3608 | 0.9970 | 0.9976 | 0.9973 | 29440 | 0.9974 | 0.9954 | 0.9964 | 5780 | 0.9998 | 0.9998 | 0.9998 | 18573 | 0.9977 | 0.9982 | 0.9979 | 28970 | 0.0 | 0.0 | 0.0 | 1 | 0.8861 | 0.9459 | 0.9150 | 74 | 0.0 | 0.0 | 0.0 | 5 | 0.9936 | 0.9926 | 0.9931 | 15255 | 0.9540 | 0.9595 | 0.9568 | 173 | 0.9779 | 0.9772 | 0.9775 | 0.9821 |
| 0.0407 | 2.0 | 14954 | 0.0531 | 0.9605 | 0.9359 | 0.9481 | 312 | 0.9599 | 0.9646 | 0.9622 | 25496 | 0.9674 | 0.9459 | 0.9565 | 5548 | 0.9834 | 0.9825 | 0.9830 | 5663 | 0.8920 | 0.9259 | 0.9087 | 2106 | 0.9728 | 0.9569 | 0.9648 | 15839 | 0.9592 | 0.8785 | 0.9171 | 107 | 0.9429 | 0.9851 | 0.9635 | 67 | 0.9890 | 0.9825 | 0.9858 | 5673 | 0.9991 | 0.9993 | 0.9992 | 4588 | 0.9855 | 0.9896 | 0.9875 | 6726 | 1.0 | 0.8 | 0.8889 | 15 | 0.9498 | 0.9303 | 0.9399 | 9010 | 0.9776 | 0.9797 | 0.9786 | 12467 | 0.9125 | 0.9899 | 0.9496 | 495 | 0.9481 | 0.9843 | 0.9659 | 575 | 0.9788 | 0.9771 | 0.9779 | 38646 | 0.9252 | 0.9285 | 0.9268 | 6291 | 0.5 | 0.2308 | 0.3158 | 26  | 0.96534 | 0.9769 | 0.9711 | 7820 | 0.9976 | 0.9993 | 0.9984 | 5736 | 0.9929 | 0.9952 | 0.9940 | 419 | 0.9861 | 0.9928 | 0.9895 | 2934 | 0.9972 | 0.9984 | 0.9978 | 2489 | 1.0 | 0.9997 | 0.9999 | 3608 | 0.9986 | 0.9982 | 0.9984 | 29440 | 0.9964 | 0.9978 | 0.9971 | 5780  | 0.9999 | 0.9999 | 0.9999 | 18573 | 0.9985 | 0.9983 | 0.9984 | 28970 | 0.0 | 0.0 | 0.0 | 1 | 0.9114 | 0.9730 | 0.9412 | 74 | 0.0 | 0.0 | 0.0 | 5 | 0.9949 | 0.9961 | 0.9955 | 15255 | 0.9651 | 0.9595 | 0.9623 | 173 | 0.9817 | 0.9808 | 0.9813 | 0.9850 |
| 0.0246 | 3.0 | 22431 | 0.0533 | 0.9581 | 0.9519 | 0.9550 | 312 | 0.9658 | 0.9655 | 0.9657 | 25496 | 0.9630 | 0.9573 | 0.9601 | 5548 | 0.9836 | 0.9853 | 0.9845 | 5663 | 0.9182 | 0.9117 | 0.9149 | 2106 | 0.9672 | 0.9663 | 0.9668 | 15839 | 0.94 | 0.8785 | 0.9082 | 107 | 0.9848 | 0.9701 | 0.9774 | 67 | 0.9866 | 0.9850 | 0.9858 | 5673 | 0.9993 | 0.9993 | 0.9993 | 4588 | 0.9877 | 0.9896 | 0.9886 | 6726 | 1.0 | 0.8 | 0.8889 | 15 | 0.9487 | 0.9305 | 0.9395 | 9010 | 0.9804 | 0.9806 | 0.9805 | 12467 | 0.9400 | 0.9818 | 0.9605 | 495 | 0.9612 | 0.9913 | 0.9760 | 575 | 0.9796 | 0.9794 | 0.9795 | 38646 | 0.9330 | 0.9278 | 0.9304 | 6291 | 0.75 | 0.2308 | 0.3529 | 26 | 0.9692 | 0.9774 | 0.9733 | 7820 | 0.9984 | 0.9993 | 0.9989 | 5736 | 1.0 | 0.9952 | 0.9976 | 419 | 0.9888 | 0.9918 | 0.9903 | 2934 | 0.9972 | 0.9984 | 0.9978 | 2489 | 1.0 | 0.9997 | 0.9999 | 3608 | 0.9980 | 0.9981 | 0.9981 | 29440 | 0.9976 | 0.9972 | 0.9974 | 5780 | 0.9999 | 0.9998 | 0.9999 | 18573 | 0.9988 | 0.9985 | 0.9986 | 28970 | 0.0 | 0.0 | 0.0 | 1 | 0.9467 | 0.9595 | 0.9530 | 74 | 0.0 | 0.0 | 0.0 | 5 | 0.9951 | 0.9950 | 0.9951 | 15255 | 0.9540 | 0.9595 | 0.9568 | 173 | 0.9828 | 0.9820 | 0.9824 | 0.9860 |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3