update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- token-classification
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- twitter_pos_vcb
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: bert-base-cased-finetuned-Stromberg_NLP_Twitter-PoS_v2
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Token Classification
|
15 |
+
type: token-classification
|
16 |
+
dataset:
|
17 |
+
name: twitter_pos_vcb
|
18 |
+
type: twitter_pos_vcb
|
19 |
+
config: twitter-pos-vcb
|
20 |
+
split: train
|
21 |
+
args: twitter-pos-vcb
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.9853480683735223
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# bert-base-cased-finetuned-Stromberg_NLP_Twitter-PoS_v2
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the twitter_pos_vcb dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.0502
|
36 |
+
- $: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 3}
|
37 |
+
- '': {'precision': 0.9312320916905444, 'recall': 0.9530791788856305, 'f1-score': 0.9420289855072465, 'support': 341}
|
38 |
+
- (: {'precision': 0.9791666666666666, 'recall': 0.9591836734693877, 'f1-score': 0.9690721649484536, 'support': 196}
|
39 |
+
- ): {'precision': 0.960167714884696, 'recall': 0.9703389830508474, 'f1-score': 0.9652265542676501, 'support': 472}
|
40 |
+
- ,: {'precision': 0.9988979501873485, 'recall': 0.9993384785005512, 'f1-score': 0.9991181657848325, 'support': 4535}
|
41 |
+
- .: {'precision': 0.9839189708141322, 'recall': 0.9894762249577601, 'f1-score': 0.9866897730281368, 'support': 20715}
|
42 |
+
- :: {'precision': 0.9926405887528997, 'recall': 0.9971072719967858, 'f1-score': 0.9948689168604183, 'support': 12445}
|
43 |
+
- Cc: {'precision': 0.9991067440821796, 'recall': 0.9986607142857142, 'f1-score': 0.9988836793927215, 'support': 4480}
|
44 |
+
- Cd: {'precision': 0.9903884661593912, 'recall': 0.9899919935948759, 'f1-score': 0.9901901901901902, 'support': 2498}
|
45 |
+
- Dt: {'precision': 0.9981148589510537, 'recall': 0.9976446837146703, 'f1-score': 0.9978797159492478, 'support': 14860}
|
46 |
+
- Ex: {'precision': 0.9142857142857143, 'recall': 0.9846153846153847, 'f1-score': 0.9481481481481482, 'support': 65}
|
47 |
+
- Fw: {'precision': 1.0, 'recall': 0.1, 'f1-score': 0.18181818181818182, 'support': 10}
|
48 |
+
- Ht: {'precision': 0.999877541023757, 'recall': 0.9997551120362435, 'f1-score': 0.9998163227820978, 'support': 8167}
|
49 |
+
- In: {'precision': 0.9960399353003514, 'recall': 0.9954846981437092, 'f1-score': 0.9957622393219583, 'support': 17939}
|
50 |
+
- Jj: {'precision': 0.9812470698546648, 'recall': 0.9834756049808129, 'f1-score': 0.9823600735322877, 'support': 12769}
|
51 |
+
- Jjr: {'precision': 0.9304511278195489, 'recall': 0.9686888454011742, 'f1-score': 0.9491850431447747, 'support': 511}
|
52 |
+
- Jjs: {'precision': 0.9578414839797639, 'recall': 0.9726027397260274, 'f1-score': 0.9651656754460493, 'support': 584}
|
53 |
+
- Md: {'precision': 0.9901398761751892, 'recall': 0.9908214777420835, 'f1-score': 0.990480559697213, 'support': 4358}
|
54 |
+
- Nn: {'precision': 0.9810285563194078, 'recall': 0.9819697621331922, 'f1-score': 0.9814989335846437, 'support': 30227}
|
55 |
+
- Nnp: {'precision': 0.9609722697706266, 'recall': 0.9467116357504216, 'f1-score': 0.9537886510363575, 'support': 8895}
|
56 |
+
- Nnps: {'precision': 1.0, 'recall': 0.037037037037037035, 'f1-score': 0.07142857142857142, 'support': 27}
|
57 |
+
- Nns: {'precision': 0.9697771061579146, 'recall': 0.9776564681985528, 'f1-score': 0.9737008471361739, 'support': 7877}
|
58 |
+
- Pos: {'precision': 0.9977272727272727, 'recall': 0.984304932735426, 'f1-score': 0.9909706546275394, 'support': 446}
|
59 |
+
- Prp: {'precision': 0.9983503349829983, 'recall': 0.9985184187487373, 'f1-score': 0.9984343697917544, 'support': 29698}
|
60 |
+
- Prp$: {'precision': 0.9974262182566919, 'recall': 0.9974262182566919, 'f1-score': 0.9974262182566919, 'support': 5828}
|
61 |
+
- Rb: {'precision': 0.9939770374552983, 'recall': 0.9929802569727358, 'f1-score': 0.9934783971906942, 'support': 15955}
|
62 |
+
- Rbr: {'precision': 0.9058823529411765, 'recall': 0.8191489361702128, 'f1-score': 0.8603351955307263, 'support': 94}
|
63 |
+
- Rbs: {'precision': 0.92, 'recall': 1.0, 'f1-score': 0.9583333333333334, 'support': 69}
|
64 |
+
- Rp: {'precision': 0.9802197802197802, 'recall': 0.9903774981495189, 'f1-score': 0.9852724594992636, 'support': 1351}
|
65 |
+
- Rt: {'precision': 0.9995065383666419, 'recall': 0.9996298581122763, 'f1-score': 0.9995681944358769, 'support': 8105}
|
66 |
+
- Sym: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 9}
|
67 |
+
- To: {'precision': 0.9984649496844619, 'recall': 0.9989761092150171, 'f1-score': 0.9987204640450398, 'support': 5860}
|
68 |
+
- Uh: {'precision': 0.9614460148062687, 'recall': 0.9507510933637574, 'f1-score': 0.9560686457287633, 'support': 10518}
|
69 |
+
- Url: {'precision': 1.0, 'recall': 0.9997242900468707, 'f1-score': 0.9998621260168207, 'support': 3627}
|
70 |
+
- Usr: {'precision': 0.9999025388626285, 'recall': 1.0, 'f1-score': 0.9999512670565303, 'support': 20519}
|
71 |
+
- Vb: {'precision': 0.9619302598929085, 'recall': 0.9570556133056133, 'f1-score': 0.9594867452615125, 'support': 15392}
|
72 |
+
- Vbd: {'precision': 0.9592894152479645, 'recall': 0.9548719837907533, 'f1-score': 0.9570756023262255, 'support': 5429}
|
73 |
+
- Vbg: {'precision': 0.9848831077518018, 'recall': 0.984191111891797, 'f1-score': 0.9845369882270251, 'support': 5693}
|
74 |
+
- Vbn: {'precision': 0.9053408597481546, 'recall': 0.9164835164835164, 'f1-score': 0.910878112712975, 'support': 2275}
|
75 |
+
- Vbp: {'precision': 0.963605718209626, 'recall': 0.9666228317364894, 'f1-score': 0.9651119169688633, 'support': 15969}
|
76 |
+
- Vbz: {'precision': 0.9881780250347705, 'recall': 0.9861207494795281, 'f1-score': 0.9871483153872872, 'support': 5764}
|
77 |
+
- Wdt: {'precision': 0.8666666666666667, 'recall': 0.9285714285714286, 'f1-score': 0.896551724137931, 'support': 14}
|
78 |
+
- Wp: {'precision': 0.99125, 'recall': 0.993734335839599, 'f1-score': 0.9924906132665832, 'support': 1596}
|
79 |
+
- Wrb: {'precision': 0.9963488843813387, 'recall': 0.9979683055668428, 'f1-score': 0.9971579374746244, 'support': 2461}
|
80 |
+
- ``: {'precision': 0.9481865284974094, 'recall': 0.9786096256684492, 'f1-score': 0.963157894736842, 'support': 187}
|
81 |
+
- Accuracy: 0.9853
|
82 |
+
- Macro avg: {'precision': 0.9296417163691048, 'recall': 0.8931046018294694, 'f1-score': 0.8930917459781836, 'support': 308833}
|
83 |
+
- Weighted avg: {'precision': 0.985306457604231, 'recall': 0.9853480683735223, 'f1-score': 0.9852689858931941, 'support': 308833}
|
84 |
+
|
85 |
+
## Model description
|
86 |
+
|
87 |
+
More information needed
|
88 |
+
|
89 |
+
## Intended uses & limitations
|
90 |
+
|
91 |
+
More information needed
|
92 |
+
|
93 |
+
## Training and evaluation data
|
94 |
+
|
95 |
+
More information needed
|
96 |
+
|
97 |
+
## Training procedure
|
98 |
+
|
99 |
+
### Training hyperparameters
|
100 |
+
|
101 |
+
The following hyperparameters were used during training:
|
102 |
+
- learning_rate: 2e-05
|
103 |
+
- train_batch_size: 16
|
104 |
+
- eval_batch_size: 16
|
105 |
+
- seed: 42
|
106 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
107 |
+
- lr_scheduler_type: linear
|
108 |
+
- num_epochs: 2
|
109 |
+
|
110 |
+
### Training results
|
111 |
+
|
112 |
+
| Training Loss | Epoch | Step | Validation Loss | $ | '' | ( | ) | , | . | : | Cc | Cd | Dt | Ex | Fw | Ht | In | Jj | Jjr | Jjs | Md | Nn | Nnp | Nnps | Nns | Pos | Prp | Prp$ | Rb | Rbr | Rbs | Rp | Rt | Sym | To | Uh | Url | Usr | Vb | Vbd | Vbg | Vbn | Vbp | Vbz | Wdt | Wp | Wrb | `` | Accuracy | Macro avg | Weighted avg |
|
113 |
+
|:-------------:|:-----:|:-----:|:---------------:|:----------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------:|:--------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|
|
114 |
+
| 0.0649 | 1.0 | 7477 | 0.0570 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 3} | {'precision': 0.9257142857142857, 'recall': 0.9501466275659824, 'f1-score': 0.9377713458755427, 'support': 341} | {'precision': 0.9690721649484536, 'recall': 0.9591836734693877, 'f1-score': 0.964102564102564, 'support': 196} | {'precision': 0.9427402862985685, 'recall': 0.9766949152542372, 'f1-score': 0.959417273673257, 'support': 472} | {'precision': 0.998677831643896, 'recall': 0.9993384785005512, 'f1-score': 0.9990080458503251, 'support': 4535} | {'precision': 0.977118886452474, 'recall': 0.9895244991552016, 'f1-score': 0.9832825654186554, 'support': 20715} | {'precision': 0.9933418899406385, 'recall': 0.9950180795500201, 'f1-score': 0.9941792782305006, 'support': 12445} | {'precision': 0.9995530726256984, 'recall': 0.9984375, 'f1-score': 0.9989949748743719, 'support': 4480} | {'precision': 0.9856573705179282, 'recall': 0.9903923138510808, 'f1-score': 0.9880191693290733, 'support': 2498} | {'precision': 0.9974431435876733, 'recall': 0.9975773889636609, 'f1-score': 0.9975102617589665, 'support': 14860} | {'precision': 0.9846153846153847, 'recall': 0.9846153846153847, 'f1-score': 0.9846153846153847, 'support': 65} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 10} | {'precision': 0.9993879299791896, 'recall': 0.9996326680543651, 'f1-score': 0.9995102840352595, 'support': 8167} | {'precision': 0.996751246289139, 'recall': 0.9919727966999276, 'f1-score': 0.9943562807331248, 'support': 17939} | {'precision': 0.9833821318350875, 'recall': 0.9732163834286162, 'f1-score': 0.9782728489333229, 'support': 12769} | {'precision': 0.9160447761194029, 'recall': 0.9608610567514677, 'f1-score': 0.9379178605539636, 'support': 511} | {'precision': 0.9656357388316151, 'recall': 0.9623287671232876, 'f1-score': 0.9639794168096055, 'support': 584} | {'precision': 0.9894398530762167, 'recall': 0.9889857732905002, 'f1-score': 0.9892127610741337, 'support': 4358} | {'precision': 0.9773657120232282, 'recall': 0.9799847818175803, 'f1-score': 0.9786734946725035, 'support': 30227} | {'precision': 0.9524512029051294, 'recall': 0.9435637998875773, 'f1-score': 0.9479866719376517, 'support': 8895} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 27} | {'precision': 0.9615001245950661, 'recall': 0.9796876983623207, 'f1-score': 0.9705087090486072, 'support': 7877} | {'precision': 1.0, 'recall': 0.984304932735426, 'f1-score': 0.9920903954802259, 'support': 446} | {'precision': 0.9984506567867969, 'recall': 0.9981816957370867, 'f1-score': 0.9983161581464269, 'support': 29698} | {'precision': 0.9967404357522731, 'recall': 0.9969114619080301, 'f1-score': 0.996825941494381, 'support': 5828} | {'precision': 0.9929754139488208, 'recall': 0.9922908179254152, 'f1-score': 0.9926329978996206, 'support': 15955} | {'precision': 0.9102564102564102, 'recall': 0.7553191489361702, 'f1-score': 0.8255813953488371, 'support': 94} | {'precision': 0.9324324324324325, 'recall': 1.0, 'f1-score': 0.965034965034965, 'support': 69} | {'precision': 0.9496810772501771, 'recall': 0.9918578830495929, 'f1-score': 0.9703113685734974, 'support': 1351} | {'precision': 0.9997531778353697, 'recall': 0.9995064774830351, 'f1-score': 0.9996298124383021, 'support': 8105} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 9} | {'precision': 0.9976145851081956, 'recall': 0.9991467576791809, 'f1-score': 0.9983800835535852, 'support': 5860} | {'precision': 0.9536072530864198, 'recall': 0.9400076060087469, 'f1-score': 0.9467585942736763, 'support': 10518} | {'precision': 1.0, 'recall': 0.9997242900468707, 'f1-score': 0.9998621260168207, 'support': 3627} | {'precision': 0.9999025388626285, 'recall': 1.0, 'f1-score': 0.9999512670565303, 'support': 20519} | {'precision': 0.9477061276868785, 'recall': 0.9595893970893971, 'f1-score': 0.9536107434548213, 'support': 15392} | {'precision': 0.9504877599852751, 'recall': 0.9511880641002026, 'f1-score': 0.9508377830970356, 'support': 5429} | {'precision': 0.9805672268907563, 'recall': 0.9838398032671702, 'f1-score': 0.9822007891275757, 'support': 5693} | {'precision': 0.9150772025431426, 'recall': 0.8857142857142857, 'f1-score': 0.9001563547018092, 'support': 2275} | {'precision': 0.9659941631772617, 'recall': 0.953472352683324, 'f1-score': 0.9596924143581986, 'support': 15969} | {'precision': 0.9898548189609935, 'recall': 0.9817834836918806, 'f1-score': 0.9858026304328891, 'support': 5764} | {'precision': 0.8666666666666667, 'recall': 0.9285714285714286, 'f1-score': 0.896551724137931, 'support': 14} | {'precision': 0.9930904522613065, 'recall': 0.9906015037593985, 'f1-score': 0.9918444165621078, 'support': 1596} | {'precision': 0.9963459196102314, 'recall': 0.9971556277935798, 'f1-score': 0.9967506092607635, 'support': 2461} | {'precision': 0.9432989690721649, 'recall': 0.9786096256684492, 'f1-score': 0.9606299212598425, 'support': 187} | 0.9829 | {'precision': 0.8843643626705173, 'recall': 0.886420871781996, 'f1-score': 0.8851282596274812, 'support': 308833} | {'precision': 0.9827817256769859, 'recall': 0.9829292854066761, 'f1-score': 0.9828343183557866, 'support': 308833} |
|
115 |
+
| 0.0396 | 2.0 | 14954 | 0.0502 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 3} | {'precision': 0.9312320916905444, 'recall': 0.9530791788856305, 'f1-score': 0.9420289855072465, 'support': 341} | {'precision': 0.9791666666666666, 'recall': 0.9591836734693877, 'f1-score': 0.9690721649484536, 'support': 196} | {'precision': 0.960167714884696, 'recall': 0.9703389830508474, 'f1-score': 0.9652265542676501, 'support': 472} | {'precision': 0.9988979501873485, 'recall': 0.9993384785005512, 'f1-score': 0.9991181657848325, 'support': 4535} | {'precision': 0.9839189708141322, 'recall': 0.9894762249577601, 'f1-score': 0.9866897730281368, 'support': 20715} | {'precision': 0.9926405887528997, 'recall': 0.9971072719967858, 'f1-score': 0.9948689168604183, 'support': 12445} | {'precision': 0.9991067440821796, 'recall': 0.9986607142857142, 'f1-score': 0.9988836793927215, 'support': 4480} | {'precision': 0.9903884661593912, 'recall': 0.9899919935948759, 'f1-score': 0.9901901901901902, 'support': 2498} | {'precision': 0.9981148589510537, 'recall': 0.9976446837146703, 'f1-score': 0.9978797159492478, 'support': 14860} | {'precision': 0.9142857142857143, 'recall': 0.9846153846153847, 'f1-score': 0.9481481481481482, 'support': 65} | {'precision': 1.0, 'recall': 0.1, 'f1-score': 0.18181818181818182, 'support': 10} | {'precision': 0.999877541023757, 'recall': 0.9997551120362435, 'f1-score': 0.9998163227820978, 'support': 8167} | {'precision': 0.9960399353003514, 'recall': 0.9954846981437092, 'f1-score': 0.9957622393219583, 'support': 17939} | {'precision': 0.9812470698546648, 'recall': 0.9834756049808129, 'f1-score': 0.9823600735322877, 'support': 12769} | {'precision': 0.9304511278195489, 'recall': 0.9686888454011742, 'f1-score': 0.9491850431447747, 'support': 511} | {'precision': 0.9578414839797639, 'recall': 0.9726027397260274, 'f1-score': 0.9651656754460493, 'support': 584} | {'precision': 0.9901398761751892, 'recall': 0.9908214777420835, 'f1-score': 0.990480559697213, 'support': 4358} | {'precision': 0.9810285563194078, 'recall': 0.9819697621331922, 'f1-score': 0.9814989335846437, 'support': 30227} | {'precision': 0.9609722697706266, 'recall': 0.9467116357504216, 'f1-score': 0.9537886510363575, 'support': 8895} | {'precision': 1.0, 'recall': 0.037037037037037035, 'f1-score': 0.07142857142857142, 'support': 27} | {'precision': 0.9697771061579146, 'recall': 0.9776564681985528, 'f1-score': 0.9737008471361739, 'support': 7877} | {'precision': 0.9977272727272727, 'recall': 0.984304932735426, 'f1-score': 0.9909706546275394, 'support': 446} | {'precision': 0.9983503349829983, 'recall': 0.9985184187487373, 'f1-score': 0.9984343697917544, 'support': 29698} | {'precision': 0.9974262182566919, 'recall': 0.9974262182566919, 'f1-score': 0.9974262182566919, 'support': 5828} | {'precision': 0.9939770374552983, 'recall': 0.9929802569727358, 'f1-score': 0.9934783971906942, 'support': 15955} | {'precision': 0.9058823529411765, 'recall': 0.8191489361702128, 'f1-score': 0.8603351955307263, 'support': 94} | {'precision': 0.92, 'recall': 1.0, 'f1-score': 0.9583333333333334, 'support': 69} | {'precision': 0.9802197802197802, 'recall': 0.9903774981495189, 'f1-score': 0.9852724594992636, 'support': 1351} | {'precision': 0.9995065383666419, 'recall': 0.9996298581122763, 'f1-score': 0.9995681944358769, 'support': 8105} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 9} | {'precision': 0.9984649496844619, 'recall': 0.9989761092150171, 'f1-score': 0.9987204640450398, 'support': 5860} | {'precision': 0.9614460148062687, 'recall': 0.9507510933637574, 'f1-score': 0.9560686457287633, 'support': 10518} | {'precision': 1.0, 'recall': 0.9997242900468707, 'f1-score': 0.9998621260168207, 'support': 3627} | {'precision': 0.9999025388626285, 'recall': 1.0, 'f1-score': 0.9999512670565303, 'support': 20519} | {'precision': 0.9619302598929085, 'recall': 0.9570556133056133, 'f1-score': 0.9594867452615125, 'support': 15392} | {'precision': 0.9592894152479645, 'recall': 0.9548719837907533, 'f1-score': 0.9570756023262255, 'support': 5429} | {'precision': 0.9848831077518018, 'recall': 0.984191111891797, 'f1-score': 0.9845369882270251, 'support': 5693} | {'precision': 0.9053408597481546, 'recall': 0.9164835164835164, 'f1-score': 0.910878112712975, 'support': 2275} | {'precision': 0.963605718209626, 'recall': 0.9666228317364894, 'f1-score': 0.9651119169688633, 'support': 15969} | {'precision': 0.9881780250347705, 'recall': 0.9861207494795281, 'f1-score': 0.9871483153872872, 'support': 5764} | {'precision': 0.8666666666666667, 'recall': 0.9285714285714286, 'f1-score': 0.896551724137931, 'support': 14} | {'precision': 0.99125, 'recall': 0.993734335839599, 'f1-score': 0.9924906132665832, 'support': 1596} | {'precision': 0.9963488843813387, 'recall': 0.9979683055668428, 'f1-score': 0.9971579374746244, 'support': 2461} | {'precision': 0.9481865284974094, 'recall': 0.9786096256684492, 'f1-score': 0.963157894736842, 'support': 187} | 0.9853 | {'precision': 0.9296417163691048, 'recall': 0.8931046018294694, 'f1-score': 0.8930917459781836, 'support': 308833} | {'precision': 0.985306457604231, 'recall': 0.9853480683735223, 'f1-score': 0.9852689858931941, 'support': 308833} |
|
116 |
+
|
117 |
+
|
118 |
+
### Framework versions
|
119 |
+
|
120 |
+
- Transformers 4.28.1
|
121 |
+
- Pytorch 2.0.0
|
122 |
+
- Datasets 2.11.0
|
123 |
+
- Tokenizers 0.13.3
|