DunnBC22 commited on
Commit
ea6b18c
1 Parent(s): a03516f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -12
README.md CHANGED
@@ -23,14 +23,31 @@ pipeline_tag: token-classification
23
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased).
24
  It achieves the following results on the evaluation set:
25
  - Loss: 0.0881
26
- - Loc: {'precision': 0.9282034236330398, 'recall': 0.9378673383711167, 'f1': 0.9330103575008353, 'number': 5955}
27
- - Misc: {'precision': 0.8336608897623727, 'recall': 0.9219521833629718, 'f1': 0.8755864139613436, 'number': 5061}
28
- - Org: {'precision': 0.9351851851851852, 'recall': 0.9370832125253696, 'f1': 0.9361332367849385, 'number': 3449}
29
- - Per: {'precision': 0.9728037566034045, 'recall': 0.9543186180422265, 'f1': 0.9634725317314214, 'number': 5210}
30
- - Overall Precision: 0.9145
31
- - Overall Recall: 0.9380
32
- - Overall F1: 0.9261
33
- - Overall Accuracy: 0.9912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
  ## Model description
36
 
@@ -59,11 +76,12 @@ The following hyperparameters were used during training:
59
 
60
  ### Training results
61
 
62
- | Training Loss | Epoch | Step | Validation Loss | Loc | Misc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
63
- |:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
64
- | 0.1 | 1.0 | 5795 | 0.0943 | {'precision': 0.9075480846937126, 'recall': 0.9429051217464316, 'f1': 0.9248888156811068, 'number': 5955} | {'precision': 0.8320190720704199, 'recall': 0.8964631495751828, 'f1': 0.8630397565151225, 'number': 5061} | {'precision': 0.9151428571428571, 'recall': 0.9286749782545666, 'f1': 0.9218592603252267, 'number': 3449} | {'precision': 0.9683036587751908, 'recall': 0.9499040307101727, 'f1': 0.9590155992636372, 'number': 5210} | 0.9039 | 0.9303 | 0.9169 | 0.9901 |
65
- | 0.0578 | 2.0 | 11590 | 0.0881 | {'precision': 0.9282034236330398, 'recall': 0.9378673383711167, 'f1': 0.9330103575008353, 'number': 5955} | {'precision': 0.8336608897623727, 'recall': 0.9219521833629718, 'f1': 0.8755864139613436, 'number': 5061} | {'precision': 0.9351851851851852, 'recall': 0.9370832125253696, 'f1': 0.9361332367849385, 'number': 3449} | {'precision': 0.9728037566034045, 'recall': 0.9543186180422265, 'f1': 0.9634725317314214, 'number': 5210} | 0.9145 | 0.9380 | 0.9261 | 0.9912 |
66
 
 
67
 
68
  ### Framework versions
69
 
 
23
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased).
24
  It achieves the following results on the evaluation set:
25
  - Loss: 0.0881
26
+ - Loc
27
+ - Precision: 0.9282034236330398
28
+ - Recall: 0.9378673383711167
29
+ - F1: 0.9330103575008353
30
+ - Number: 5955
31
+ - Misc
32
+ - Precision: 0.8336608897623727
33
+ - Rrecall: 0.9219521833629718
34
+ - F1: 0.8755864139613436
35
+ - Number: 5061
36
+ - Org
37
+ - Precision: 0.9351851851851852
38
+ - Recall: 0.9370832125253696
39
+ - F1: 0.9361332367849385
40
+ - Number: 3449
41
+ - Per
42
+ - Precision: 0.9728037566034045
43
+ - Recall: 0.9543186180422265
44
+ - F1: 0.9634725317314214
45
+ - Number: 5210
46
+ - Overall
47
+ - Precision: 0.9145
48
+ - Recall: 0.9380
49
+ - F1: 0.9261
50
+ - Accuracy: 0.9912
51
 
52
  ## Model description
53
 
 
76
 
77
  ### Training results
78
 
79
+ | Training Loss | Epoch | Step | Validation Loss | Loc Precision | Loc Recall | Loc F1 | Loc Number | Misc Precision | Misc Recall | Misc F1 | Misc Number | Org Precision | Org Recall | Org F1 | Org Number | Per Precision | Per Recall | Per F1 | Per Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
80
+ |:-------------:|:-----:|:-----:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:------------:|:-----------:|:------------:|:--------:|:----------:|:--------:|:----------:|:---:|
81
+ | 0.1 | 1.0 | 5795 | 0.0943 | 0.9075 | 0.9429 | 0.9249 | 5955 | 0.8320 | 0.8965 | 0.8630 | 5061 | 0.9151 | 0.9287 | 0.9219 | 3449 | 0.9683 | 0.9499 | 0.9590 | 5210 | 0.9039 | 0.9303 | 0.9169 | 0.9901 |
82
+ | 0.0578 | 2.0 | 11590 | 0.0881 | 0.9282 | 0.9379 | 0.9330 | 5955 | 0.8337 | 0.9220 | 0.8756 | 5061 | 0.9352 | 0.9371 | 0.9361 | 3449 | 0.9728 | 0.9543 | 0.9635 | 5210 | 0.9145 | 0.9380 | 0.9261 | 0.9912 |
83
 
84
+ * All values in the chart above are rounded to the nearest ten-thousandth.
85
 
86
  ### Framework versions
87