update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- imagefolder
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: dit-base-Business_Documents_Classified_v2
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Image Classification
|
13 |
+
type: image-classification
|
14 |
+
dataset:
|
15 |
+
name: imagefolder
|
16 |
+
type: imagefolder
|
17 |
+
config: data
|
18 |
+
split: train
|
19 |
+
args: data
|
20 |
+
metrics:
|
21 |
+
- name: Accuracy
|
22 |
+
type: accuracy
|
23 |
+
value: 0.826
|
24 |
+
---
|
25 |
+
|
26 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
27 |
+
should probably proofread and complete it, then remove this comment. -->
|
28 |
+
|
29 |
+
# dit-base-Business_Documents_Classified_v2
|
30 |
+
|
31 |
+
This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the imagefolder dataset.
|
32 |
+
It achieves the following results on the evaluation set:
|
33 |
+
- Loss: 0.6715
|
34 |
+
- Accuracy: 0.826
|
35 |
+
- Weighted f1: 0.8272
|
36 |
+
- Micro f1: 0.826
|
37 |
+
- Macro f1: 0.8242
|
38 |
+
- Weighted recall: 0.826
|
39 |
+
- Micro recall: 0.826
|
40 |
+
- Macro recall: 0.8237
|
41 |
+
- Weighted precision: 0.8327
|
42 |
+
- Micro precision: 0.826
|
43 |
+
- Macro precision: 0.8293
|
44 |
+
|
45 |
+
## Model description
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Intended uses & limitations
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training and evaluation data
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Training procedure
|
58 |
+
|
59 |
+
### Training hyperparameters
|
60 |
+
|
61 |
+
The following hyperparameters were used during training:
|
62 |
+
- learning_rate: 5e-05
|
63 |
+
- train_batch_size: 32
|
64 |
+
- eval_batch_size: 32
|
65 |
+
- seed: 42
|
66 |
+
- gradient_accumulation_steps: 4
|
67 |
+
- total_train_batch_size: 128
|
68 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
69 |
+
- lr_scheduler_type: linear
|
70 |
+
- lr_scheduler_warmup_ratio: 0.1
|
71 |
+
- num_epochs: 18
|
72 |
+
|
73 |
+
### Training results
|
74 |
+
|
75 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|
76 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
|
77 |
+
| 2.7266 | 0.99 | 31 | 2.4738 | 0.208 | 0.1811 | 0.208 | 0.1827 | 0.208 | 0.208 | 0.2101 | 0.2143 | 0.208 | 0.2246 |
|
78 |
+
| 2.171 | 1.98 | 62 | 1.8510 | 0.423 | 0.3936 | 0.4230 | 0.3925 | 0.423 | 0.423 | 0.4243 | 0.4503 | 0.423 | 0.4446 |
|
79 |
+
| 1.6525 | 2.98 | 93 | 1.2633 | 0.61 | 0.5884 | 0.61 | 0.5855 | 0.61 | 0.61 | 0.6124 | 0.6377 | 0.61 | 0.6283 |
|
80 |
+
| 1.346 | 4.0 | 125 | 1.0259 | 0.706 | 0.7023 | 0.706 | 0.6992 | 0.706 | 0.706 | 0.7058 | 0.7095 | 0.706 | 0.7034 |
|
81 |
+
| 1.253 | 4.99 | 156 | 0.9180 | 0.729 | 0.7277 | 0.729 | 0.7239 | 0.729 | 0.729 | 0.7291 | 0.7340 | 0.729 | 0.7261 |
|
82 |
+
| 1.0975 | 5.98 | 187 | 0.8859 | 0.747 | 0.7480 | 0.747 | 0.7437 | 0.747 | 0.747 | 0.7472 | 0.7609 | 0.747 | 0.7526 |
|
83 |
+
| 1.1122 | 6.98 | 218 | 0.8270 | 0.76 | 0.7606 | 0.76 | 0.7578 | 0.76 | 0.76 | 0.7594 | 0.7772 | 0.76 | 0.7727 |
|
84 |
+
| 1.0365 | 8.0 | 250 | 0.7806 | 0.775 | 0.7759 | 0.775 | 0.7730 | 0.775 | 0.775 | 0.7735 | 0.7957 | 0.775 | 0.7920 |
|
85 |
+
| 1.004 | 8.99 | 281 | 0.7472 | 0.796 | 0.7977 | 0.796 | 0.7957 | 0.796 | 0.796 | 0.7956 | 0.8193 | 0.796 | 0.8151 |
|
86 |
+
| 0.9278 | 9.98 | 312 | 0.7296 | 0.795 | 0.7974 | 0.795 | 0.7957 | 0.795 | 0.795 | 0.7953 | 0.8157 | 0.795 | 0.8115 |
|
87 |
+
| 0.8767 | 10.98 | 343 | 0.7257 | 0.809 | 0.8101 | 0.809 | 0.8078 | 0.809 | 0.809 | 0.8091 | 0.8182 | 0.809 | 0.8136 |
|
88 |
+
| 0.8656 | 12.0 | 375 | 0.6875 | 0.814 | 0.8137 | 0.8140 | 0.8106 | 0.814 | 0.814 | 0.8122 | 0.8207 | 0.814 | 0.8164 |
|
89 |
+
| 0.7905 | 12.99 | 406 | 0.7060 | 0.808 | 0.8093 | 0.808 | 0.8071 | 0.808 | 0.808 | 0.8068 | 0.8182 | 0.808 | 0.8145 |
|
90 |
+
| 0.8804 | 13.98 | 437 | 0.6849 | 0.82 | 0.8214 | 0.82 | 0.8183 | 0.82 | 0.82 | 0.8183 | 0.8260 | 0.82 | 0.8215 |
|
91 |
+
| 0.8265 | 14.98 | 468 | 0.6821 | 0.816 | 0.8171 | 0.816 | 0.8143 | 0.816 | 0.816 | 0.8142 | 0.8242 | 0.816 | 0.8206 |
|
92 |
+
| 0.7929 | 16.0 | 500 | 0.6877 | 0.818 | 0.8184 | 0.818 | 0.8152 | 0.818 | 0.818 | 0.8167 | 0.8240 | 0.818 | 0.8186 |
|
93 |
+
| 0.7993 | 16.99 | 531 | 0.6718 | 0.825 | 0.8259 | 0.825 | 0.8234 | 0.825 | 0.825 | 0.8227 | 0.8306 | 0.825 | 0.8282 |
|
94 |
+
| 0.7954 | 17.86 | 558 | 0.6715 | 0.826 | 0.8272 | 0.826 | 0.8242 | 0.826 | 0.826 | 0.8237 | 0.8327 | 0.826 | 0.8293 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.28.1
|
100 |
+
- Pytorch 2.0.0+cu118
|
101 |
+
- Datasets 2.11.0
|
102 |
+
- Tokenizers 0.13.3
|