DunnBC22 commited on
Commit
9e4aca3
1 Parent(s): 6fd633b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - imagefolder
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: dit-base-Document_Classification-Desafio_1
10
+ results:
11
+ - task:
12
+ name: Image Classification
13
+ type: image-classification
14
+ dataset:
15
+ name: imagefolder
16
+ type: imagefolder
17
+ config: validation
18
+ split: train
19
+ args: validation
20
+ metrics:
21
+ - name: Accuracy
22
+ type: accuracy
23
+ value: 0.9865
24
+ ---
25
+
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+
29
+ # dit-base-Document_Classification-Desafio_1
30
+
31
+ This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the imagefolder dataset.
32
+ It achieves the following results on the evaluation set:
33
+ - Loss: 0.0436
34
+ - Accuracy: 0.9865
35
+ - Weighted f1: 0.9865
36
+ - Micro f1: 0.9865
37
+ - Macro f1: 0.9863
38
+ - Weighted recall: 0.9865
39
+ - Micro recall: 0.9865
40
+ - Macro recall: 0.9861
41
+ - Weighted precision: 0.9869
42
+ - Micro precision: 0.9865
43
+ - Macro precision: 0.9870
44
+
45
+ ## Model description
46
+
47
+ More information needed
48
+
49
+ ## Intended uses & limitations
50
+
51
+ More information needed
52
+
53
+ ## Training and evaluation data
54
+
55
+ More information needed
56
+
57
+ ## Training procedure
58
+
59
+ ### Training hyperparameters
60
+
61
+ The following hyperparameters were used during training:
62
+ - learning_rate: 5e-05
63
+ - train_batch_size: 32
64
+ - eval_batch_size: 32
65
+ - seed: 42
66
+ - gradient_accumulation_steps: 4
67
+ - total_train_batch_size: 128
68
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
69
+ - lr_scheduler_type: linear
70
+ - lr_scheduler_warmup_ratio: 0.1
71
+ - num_epochs: 8
72
+
73
+ ### Training results
74
+
75
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
76
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
77
+ | 0.8316 | 0.99 | 62 | 0.7519 | 0.743 | 0.7020 | 0.743 | 0.7015 | 0.743 | 0.743 | 0.7430 | 0.6827 | 0.743 | 0.6819 |
78
+ | 0.3561 | 2.0 | 125 | 0.2302 | 0.9395 | 0.9401 | 0.9395 | 0.9400 | 0.9395 | 0.9395 | 0.9394 | 0.9482 | 0.9395 | 0.9480 |
79
+ | 0.2222 | 2.99 | 187 | 0.1350 | 0.956 | 0.9564 | 0.956 | 0.9561 | 0.956 | 0.956 | 0.9551 | 0.9598 | 0.956 | 0.9600 |
80
+ | 0.1705 | 4.0 | 250 | 0.0873 | 0.9725 | 0.9727 | 0.9725 | 0.9725 | 0.9725 | 0.9725 | 0.9721 | 0.9740 | 0.9725 | 0.9740 |
81
+ | 0.1541 | 4.99 | 312 | 0.0642 | 0.9825 | 0.9825 | 0.9825 | 0.9824 | 0.9825 | 0.9825 | 0.9822 | 0.9830 | 0.9825 | 0.9830 |
82
+ | 0.1253 | 6.0 | 375 | 0.0330 | 0.9915 | 0.9915 | 0.9915 | 0.9914 | 0.9915 | 0.9915 | 0.9913 | 0.9916 | 0.9915 | 0.9916 |
83
+ | 0.1196 | 6.99 | 437 | 0.0524 | 0.982 | 0.9822 | 0.982 | 0.9820 | 0.982 | 0.982 | 0.9817 | 0.9832 | 0.982 | 0.9832 |
84
+ | 0.0896 | 7.94 | 496 | 0.0436 | 0.9865 | 0.9865 | 0.9865 | 0.9863 | 0.9865 | 0.9865 | 0.9861 | 0.9869 | 0.9865 | 0.9870 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.28.1
90
+ - Pytorch 2.0.0
91
+ - Datasets 2.11.0
92
+ - Tokenizers 0.13.3